
Journal of Alloys and Compounds 577S (2013) S127–S130

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journa l homepage: www.e lsev ier .com/ locate / ja l l com

An explanation of phase deformation tension–compression asymmetry of TiNi by
means of microstructural modeling

A.E. Volkov ∗, E.V. Emelyanova, M.E. Evard, N.A. Volkova
Saint-Petersburg State University, Universitetsky pr. 28, Saint-Petersburg 198504, Russia

a r t i c l e i n f o

Article history:
Received 5 October 2011
Received in revised form 18 May 2012
Accepted 30 May 2012
Available online 29 September 2012

Keywords:
TiNi
Phase deformation
Modeling
Tension
Compression
Texture

a b s t r a c t

Phase deformation of mono- and polycrystalline TiNi specimens due to the direct martensitic transforma-
tion is simulated by means of a microstructural model. These simulations show that the deformation of
a polycrystalline specimen loaded by a constant stress and cooled down across the temperature interval
of the direct martensitic transformation depends on the mode of the stress being much less in the case
of compression than in the case of tension. For most orientations of a single crystal modeling predicts a
positive tension–compression asymmetry: the phase deformation in tension dominates over that in com-
pression. Only for few orientations a small negative asymmetry is observed. A hypothesis is suggested
that the positive tension–compression asymmetry of the phase deformation is inherent to TiNi because
of the specific value of the third invariant of the Bain’s deformation tensor. This hypothesis explaining the
experimentally observed tension–compression asymmetry of untextured TiNi polycrystals is supported
by microstructural modeling. Modeling also shows how the texture when it exists affects the phase defor-
mation. By varying only the third invariant of the Bain’s deformation tensor one can construct a model
material either having no tension–compression asymmetry or having a negative asymmetry when the
strain in tension is less than that in compression.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

A well-known experimental fact is that stress–strain curves of
TiNi-based shape memory alloys (SMAs) loaded in tension and
in compression are different [1–4], in other words, these alloys
demonstrate a tension–compression asymmetry. It is natural that
the reasons of this phenomenon shall be specific geometrical char-
acteristics of the martensitic transformation. The authors of works
[1,2] observed that the asymmetry is positive (deformation occurs
at a significantly less stress in tension than in compression) for
polycrystals and for single crystals with orientation 〈1 1 1〉 and it
is negative (compression is easier than tension) for 〈1 0 0〉 single
crystals. Having assumed that a plate is a primary element of the
martensite structure, they explained these phenomena by the two
factors: the presence of the {1 1 0}〈1 1 1〉 crystallographic texture
in the polycrystals and the unidirectional nature of shear produced
by a martensitic plate. Besides, they have pointed out that the
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phase deformation is affected by the different energy of coupling of
martensitic plates with different habit planes and shear directions.

Authors developing macroscopic models of the mechanical
behavior of SMA (e.g. works [3–5]) proposed to describe the
tension–compression asymmetry by introducing the third invari-
ant of the stress tensor into a model of the mechanical behavior of
SMA. In [3,4] the pseudoelastic flow rule is formulated in terms of
an equivalent stress depending on the third invariant of the stress
tensor and the authors of work [5] proposed a decomposition of the
transformation strain into a weighted sum, the terms of which are
related to tension, compression and shear, and the weights depend
on the third invariant of the stress. These works being very useful
for describing the mechanical behavior of SMA do not explain the
observed deformation phenomena.

The present work offers an explanation of the tension–
compression asymmetry of the TiNi phase deformation due to the
direct transformation on cooling. For this purpose a microstructural
model [6] previously developed by the authors is used. The model
assumes that the primary element of the martensite structure is a
domain originated by one of the variants of Bain’s distortion, rather
than a martensitic plate, bearing a shear. The corresponding defor-
mation can be described by the Bain’s deformation tensor D, which
is the symmetrical part of the homogeneous component of the lat-
tice distortion. Thus, the characteristics of the tensor D must first
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Fig. 1. Dependence of the difference between the phase deformations in tension εPh

(tension) and in compression εPh (compression) imparted to a specimen of model
material in the course of the direct transformation under stress ±100 MPa on the
Bain’s deformation mode angle ωD . The square point corresponds to real TiNi.

of all influence the macroscopic deformation features of an SMA,
including the tension–compression asymmetry. Being a symmet-
rical tensor, D can be completely specified by the orientation of
its principal axes and the three invariants. The orientation of the
principal axes effects the deformation of an anisotropic specimen
(single crystal or a textured polycrystal), while the invariants can
play a significant role in determining of the deformation of a SMA
crystal independently of its orientation, and, therefore, they can
affect the deformation of a polycrystal. Consider these two factors.

Crystallographic texture. For some single crystal orientations
(e.g. 〈1 1 〉) tension occurs at a lower stress than compression and
for some other orientations (e.g. 〈1 0 0〉) an opposite relation is
observed [1]. Since, as it was indicated in [1] the polycrystalline
specimen had a crystallographic texture of the 〈1 1 1〉{1 1 0} type,
this texture could be the reason of the tension–compression asym-
metry.

First and third invariants of the lattice deformation tensor. The
mechanical part of the thermodynamic driving force Fmech

n for the
n-th crystallographic variant of the martensitic transformation is
Fmech

n = � : Dn where � is the stress tensor and Dn is the tensor of
the n-th variant of the deformation due to the transformation. If Dn

and � have common principal axes, then

Fmech
n = � : Dn =

(
1
3

)
Sp� SpD + T��D cos(ω� − ωD),

where Sp� and SpD are the first invariants (traces) of the tensors
� and Dn, T� and � D are their second invariants (intensities of the
tangential stresses and of shear deformations), ω� and ωD are their
third invariants (stress and strain mode angles). This formula shows
that the second invariant � D just determines the absolute value of
the driving force, while the first and the third invariants introduce
corrections dependent on the stress mode.

2. Theory/calculation

The microstructural model [6] used for simulations in this work
assumes that a representative volume (point on the macrolevel)
consists of grains, inside of which (on the microlevel) there can
develop domains of martensite belonging to different orientation
variants of the Bain’s deformation. The phase macrodeformation
εPh is calculated by averaging of the microdeformations delivered
by all variants inside each grain: εGr Ph = (1/N)

∑
˚n and then – by

averaging of the deformations of all grains of the representative
volume εPh =

∑
εGr Ph(ω). Here (1/N)˚n are the volume fractions

of different variants of martensite. The laws for the martensitic
transformation are established from the balance of the thermody-
namic forces, namely the chemical and mechanical driving forces,
forces due to elastic interaction of martensite and austenite and

Fig. 2. Orientation dependences of the difference εPh (tension) − εPh (compression)
on cooling of the model material single crystals with Bain’s deformation mode angle:
(a) ωD = 0.87 (“real” material), (b) ωD = 0.59 and (c) ωD = 0.

the dissipative “friction” force responsible for the hysteresis of the
transformation.

As the first invariant of B2 → B19′ transformation is small (about
+0.08%) one must conclude that it is the third invariant that deter-
mines the peculiarities of the mechanical behavior of TiNi. To make
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