ELSEVIER

Contents lists available at SciVerse ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jalcom

Synthesis, characterization and microwave dielectric properties of Zn₂GeO₄ ceramics

Songping Wu*, Qing Ma

School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, China

ARTICLE INFO

Article history: Received 4 January 2013 Received in revised form 6 March 2013 Accepted 8 March 2013 Available online 20 March 2013

Keywords: Zn₂GeO₄ Ceramic material Dielectric Electroceramics Microstructure

ABSTRACT

 Zn_2GeO_4 ceramic materials were synthesized by solid-state method. Zn_2GeO_4 powders were investigated with X-ray powder diffraction (XRD), Fourier transform infrared (FT-IR) spectrum, Raman spectrum, X-ray photoelectron spectrum (XPS), and high resolution transmission electron microscopy (HRTEM). A dense microstructure of Zn_2GeO_4 ceramics developed when specimens were sintered at above 1150 °C. The Zn_2GeO_4 ceramics sintered at 1300 °C exhibited good microwave dielectric properties: a dielectric constant (ε_r) of 6.87, a quality factor ($Q \times f$) of 102,700 GHz and a temperature coefficient of resonant frequency (τ_f) of -32.4 ppm/°C. The results showed that Zn_2GeO_4 ceramics were promising millimeter-wave ceramic candidate materials.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Zn₂GeO₄, as a ternary oxide, has many advantages, for example good heat stability, non-toxic and high brightness. It is a self-excited blue phosphor, and considered as the ideal materials for photoluminescent and field emission display [1].

Typical synthesis methods for micrometer-sized particles of Zn₂GeO₄ and Zn₂GeO₄:Mn²⁺ are conventional solid state reaction [2–5], hydrothermal synthesis [1,6], surfactant-assisted hydrothermal synthesis [7,8], solvothermal reaction [9] and hydrolysis of alkoxides [10]. One-dimensional Zn₂GeO₄ nanostructures were also prepared by vapor growth techniques [11–13] and aqueous process [14].

Ternary germanates nanowires have been attracted great attention as important nanomaterials for the application of electrochemical sensors, electron devices, optical devices and catalysts. RuO₂-dispersed Zn₂GeO₄ was found to be a stable photocatalyst for decomposition of water [2]. Zn₂GeO₄ nanorods were used as photocatalysts for the decomposition of organic pollutants in water [3]. Zn₂GeO₄:Mn²⁺ showed green luminescence, and could be used in the alternating-current thin-film electroluminescence devices [15,16]. It was reported that Zn₂GeO₄ presented white-bluish emission, and its photoluminescence (PL) was brighter than that of ZnO phosphor [3]. Zn₂GeO₄-ethylenediamine membranes exhibit an excellent recyclability, high selectivity, and good thermal stability for highly efficient removal of heavy metal ions from

contaminated water [17]. Zn₂GeO₄ could be also used as a candidate as high-capacity anode for lithium batteries [18].

Even though various studies were conducted on Zn_2GeO_4 materials. Microwave dielectric properties of Zn_2GeO_4 ceramics have not been investigated yet. The relation between structures and dielectric properties of Zn_2GeO_4 ceramics has not been revealed. In the present work, the Zn_2GeO_4 ceramic materials were synthesized using solid-state method, and their microwave dielectric properties were investigated.

2. Experimental

2.1. Sample preparations

The Zn_2GeO_4 ceramic materials were synthesized with solid-state method. High purity reagents nano-ZnO particles (50 nm, \geqslant 99.8%; Aladdin, Shanghai, China) and GeO_2 (\geqslant 99.9%; Aladdin, Shanghai, China) were mixed with the stoichiometric ratio, milled with zirconia balls for 4 h in a planetary milling machine (QM-3SP2, Zhenguang, Nanjing, China) and then dried at $100\,^{\circ}\text{C}$ for 24 h. The powders were partially calcined at various temperatures ($600-1300\,^{\circ}\text{C}$) with a high-temperature electric furnace (SSJ-1600, Shenjia kiln, Luoyang, China) for behavior research of powders. The mixtures were dried and calcined at $1000\,^{\circ}\text{C}$ for 2 h. The calcined powders were re-milled for 4 h, dried, then granulated with 5 wt.% polyvinyl alcohol (PVA) organic binder, and finally pressed into cylindrical disks of $10\,\text{nm}$ diameter and 6 mm thickness under about $10\,\text{MPa}$ pressure with a manually tableting machine (769YP, TJKQ, Tianjin, China). These pellets were preheated at $580\,^{\circ}\text{C}$ for 2 h to expel the binder and then sintered at $1150-1350\,^{\circ}\text{C}$ for 4 h in air with an above-mentioned electric furnace to obtain bulk ceramic specimens.

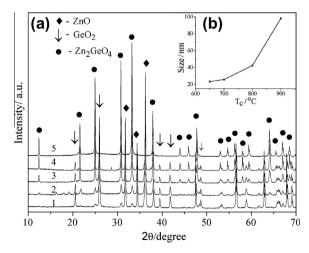
2.2. Characterization

The crystalline phases of the calcined Zn_2GeO_4 powders or sintered bulk ceramic specimens were identified by X-ray diffraction (XRD) (D8 Advance, Bruker, Germany) using Cu K α (λ = 0.15406 nm) radiation with a graphite monochromator

^{*} Corresponding author. Tel./fax: +86 20 87112897. E-mail address: chwsp@scut.edu.cn (S. Wu).

in the 20 range of 10-70° operated at 30 kV and 30 mA. The cell parameters were refined with software Jade 6.0. Transmission electron microscopy (TEM), high-resolution TEM (HRTEM) images and selected area electron diffraction (SAED) pattern were taken by a JEM-2100 electron microscopy (JEM-2100, JEOL, Tokyo, Japan) with an accelerating voltage of 200 kV. Element analysis of microdomain was carried out with an energy dispersive spectrometer (EDS) (EPMA1600, Shimadzu, Japan). FT-IR spectrum was obtained using a Fourier transform infrared spectrometer (Vector 33, Brucker, Germany). Raman spectra of Zn₂GeO₄ powders and the polished and thermally etched ceramic surfaces were obtained with Micro-raman spectrometer (Lab-RAM Aramis, HIY, France). Composition and chemical states of surface elements of the sample particles were investigated by XPS (Kratos Axis Ultra DLD, Japan) using Al Ka as exciting X-ray source. The spectra were calibrated with respect to the C1s peak resulted from the adventitious hydrocarbon at the energy of 282.5 eV. Thermal gravimetry (TG) and differential scanning calorimetry (DSC) were performed at a heating rate of 10 K/min in N2 atmosphere to characterize the thermal behaviors of the milled mixtures containing ZnO and GeO2 with a molar ratio of 2:1 via thermal analyzer (STA409 C/3/F, Netzsch, Selb, Germany), Thermal mechanical analysis (TMA) of green body, which was made by pressing the milled mixtures of ZnO and GeO₂ (with a molar ratio of 2:1), were carried out at a heating rate of 5 K/min in the air using a thermal mechanical analyzer (402PC, NETZSCH DIL, Germany). The microstructure observations of the polished and thermally etched ceramic surfaces were performed under a scanning electron microscope (SEM) (LEO 1530 VP: Zeiss. Vertrieb Deutschland, Germany). The bulk densities of ceramics were measured by the Archimedes' method. Microwave dielectric constants (ε_r) and the quality factor values $(Q \times f)$ at microwave frequencies were measured by Hakki-Coleman [19] dielectric resonator method using a Network Analyzer (N5230 PNA-L, Agilent, Santa Clara, USA). Temperature coefficient of resonant frequency (τ_f) was also measured by the same method with a changing temperature from 25 °C to 75 °C, and was calculated by the following:

$$\tau_f = \frac{f_{75} - f_{25}}{f_{25} \times 50} \times 10^6 \quad ppm/^{\circ}C \tag{1}$$


where f_{75} and f_{25} represent the resonant frequency at 75 °C and 25 °C, respectively.

3. Results and discussion

3.1. Synthesis and characterization of Zn₂GeO₄ powders

3.1.1. Phase identification of Zn₂GeO₄ powders

XRD patterns of 2ZnO–GeO₂ powders (molar ratio = 2:1) calcined at various temperatures for 4 h were shown in 1. When the powders were calcined in the low temperatures of $600-700\,^{\circ}$ C, the main crystal phases were ZnO (JCPDS No. 65-3411) and GeO₂ (JCPDS No. 36-1463); however, weak diffraction peaks of hexagonal Zn₂GeO₄ phase (JCPDS No. 11-0687) appeared, suggesting that the formation temperature of hexagonal Zn₂GeO₄ phase was at $\sim 600\,^{\circ}$ C, as exhibited in curve (1) in Fig. 1a. The amounts of Zn₂GeO₄ increased with the increasing calcination temperatures,

Fig. 1. (a) XRD patterns of the ZnO–GeO $_2$ mixtures (molar ratio of ZnO: GeO $_2$ = 2:1) calcined at different temperatures: (1) 600 °C, (2) 700 °C, (3) 800 °C, (4) 900 °C, (5) 1000 °C for 4 h, respectively. (b) Influence of the calcination temperature on grain size of Zn $_2$ GeO $_4$.

then, the desired pure Zn₂GeO₄ phase was obtained at 1000 °C. Comparing with the intensity of diffraction peaks, one could analyze relative content of each phase by a semi-quantitative method, and calculate crystalline size by Scherrer equation:

$$d = \frac{K\lambda}{\beta \cos \theta} \tag{2}$$

where d is the crystalline size, K is a shape factor (0.9), θ is the diffraction angle and β is the full-width at half-maximum of the peak. According to thermodynamics, the increasing temperature would lead to an increase in crystalline size. Fig. 1b showed the effect of calcination temperature (T_c) on crystalline size of $Z_{n_2}GeO_4$. The main diffraction peak width of hexagonal $Z_{n_2}GeO_4$ phase decreased rapidly with an increasing temperature. The crystalline size of $Z_{n_2}GeO_4$ calcined at 650 °C was 23.5 nm, and increased to 98.2 nm at 900 °C.

3.1.2. HRTEM studies

 Zn_2GeO_4 nanorod (calcined at 1300 °C) was exhibited in Fig. 2a. However, the nanorod was not typical shape of Zn_2GeO_4 crystallite, but just one among variety of morphologies. In Fig. 2b, we showed that HRTEM images of the Zn_2GeO_4 crystal, where the lattice planes exhibited spacings of 0.724 nm corresponding to the lattice planes (110). The diffraction spots suggested that the Zn_2GeO_4 grains had good crystallinity and possessed single crystalline structures (see Fig. 2c). EDS showed the atomic ratio of Zn to Zn_2GeO_4 produced, as given in Fig. 2d.

3.1.3. TG/DSC and TMA analysis

The typical TG/DSC curves of the milled 2ZnO- GeO₂ powders were shown in Fig. 3a. As shown in this figure, the TG curve showed that no obvious weight loss could be detected in the process. The sharp endothermal peak at 1098.9 °C could be attributed to the melt of germanium oxide. Though XRD studies suggested that pure hexagonal Zn₂GeO₄ phase was obtained at above 1000 °C, we assumed that trace of GeO₂ existed in the powders or ceramic specimens because of the uneven sintering.

Thermal mechanical analysis (TMA) of the green body illustrated that sintering curve had a sharp slope noticeably in the temperature region of 1050–1300 °C, and the radial shrinkage was -5.56%, as exhibited in Fig. 3b, which suggested that densification of Zn_2GeO_4 ceramics rapidly produced at above 1100 °C. Considering to the TG/DCS and TMA patterns, we deduced that the densification of Zn_2GeO_4 ceramics followed the liquid-phase sintering mechanism under high sintering temperature. Trace of GeO_2 melted at $\sim\!1100$ °C, produced liquid phase and improved the sintering of Zn_2GeO_4 ceramics.

3.1.4. FT-IR, Raman, and XPS spectra studies of Zn₂GeO₄ powders

FT-IR spectrum of the Zn₂GeO₄ particles (calcined at 1300 °C) was shown in Fig. 4a. In the spectrum, absorption ranges of Zn₂GeO₄ particles were 535 cm⁻¹ and 743–801 cm⁻¹. Yamaguchi reported that the characteristic infrared absorption ranges of Zn₂GeO₄ are as follows: v (GeO₄) 700–800 cm⁻¹ and v (ZnO₄) 500–600 cm⁻¹ [10], which were agreeable to our observation.

The local atomic structure of Zn_2GeO_4 particles (calcined at 1300 °C) was characterized by Raman spectroscopy (see Fig. 4b). We observed that the spectrum was very similar to that reported by Boppana [20]. Zhang [21] reported that peaks at 738 and 760 cm⁻¹ could be attributed to ν_3 and ν_1 stretching vibration modes of (GeO_4)^{4–}, respectively. We thought that the Raman bands at 748, 754, and 778 cm⁻¹ could be ascribed to Ge-O-Zn symmetric, defect oxygen mode and asymmetric vibrations [20], respectively.

Download English Version:

https://daneshyari.com/en/article/1614140

Download Persian Version:

https://daneshyari.com/article/1614140

Daneshyari.com