ELSEVIER ELSEVIER

Contents lists available at SciVerse ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jalcom

Hydrogen storage properties of LiBH₄ destabilized by SrH₂

D.M. Liu^{a,b}, W.J. Huang^a, T.Z. Si^a, Q.A. Zhang^{a,*}

ARTICLE INFO

Article history:
Received 20 August 2012
Received in revised form 26 September 2012
Accepted 26 September 2012
Available online 5 October 2012

Keywords: Hydrogen storage materials Lithium borohydride Destabilized hydride system Hydrogen storage properties

ABSTRACT

In this work, we have succeeded in destabilizing LiBH₄ by the addition of SrH₂, via the reaction 6LiBH₄ + - SrH₂ \rightarrow SrB₆ + 6LiH + 10H₂ with a theoretical hydrogen capacity of 9.1 wt.%. According to the van't Hoff and Arrhenius equations, the dehydrogenation enthalpy change and activation energy for the LiBH₄/SrH₂ system were experimentally determined to be 48 kJ/mol H₂ and 64 kJ/mol, respectively. Both are remarkably reduced in comparison with the pristine LiBH₄, which is responsible for the improved dehydrogenation property of the LiBH₄/SrH₂ system. The dehydrogenated products SrB₆ + 6LiH can be rehydrogenated to form LiBH₄ and LiSrH₃ at 723 K under an initial hydrogen pressure of 8.0 MPa.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Hydrogen, as a highly efficient and clean secondary energy carrier, is an ideal substitute for conventional fossil fuels in the future. For large-scale utilization of hydrogen as an energy carrier, hydrogen storage systems with high efficiency and safety should be developed. Various solid-state materials, such as metal hydrides, alanates and borohydrides, have been widely investigated for this purpose. Among them, LiBH $_4$ is one of the most promising candidates for on-board hydrogen storage, due to its high gravimetric (18.4 wt.%) and volumetric (121 kg/m 3) hydrogen density [1–3]. However, LiBH $_4$ alone has a reaction enthalpy change as high as 74 kJ/mol H $_2$ for its decomposition into LiH and B, and therefore a dehydrogenation temperature above 370 °C is required under 0.1 MPa hydrogen pressure [4]. Furthermore, the dehydrogenation process of LiBH $_4$ is rather sluggish and the rehydrogenation is hardly possible under mild temperature and pressure conditions [4,5].

During the last decade, LiBH₄ multicomponent reactive systems have been intensively investigated to destabilize LiBH₄ and enhance its dehydrogenation kinetics [6–20]. For example, Vajo et al. [6] reported that LiBH₄ could release hydrogen with a reduced reaction enthalpy by the addition of MgH₂, because of the change in reaction pathway as described below:

$$2LiBH_4 + MgH_2 \rightarrow MgB_2 + 2LiH + 4H_2 \tag{1}$$

Moreover, the formation of MgB₂ could overcome the chemical inertness of pure boron, thus greatly improving the rehydrogena-

tion to form LiBH₄. Following this strategy, the LiBH₄/CaH₂ system with a small amount of catalyst was also investigated [7,21–24]. It was found that a dehydrogenation enthalpy change of 56.5 kJ/mol H₂ could be obtained by incorporating LiBH₄ with CaH₂, based on the formation of calcium hexaboride CaB₆ [21].

In view of the previous results mentioned above, a question arises as to whether other binary alkaline-earth metal hydrides than MgH₂ and CaH₂ can be used as the destabilizing additives for LiBH₄. Stimulated by this question, the dehydrogenation and rehydrogenation properties, as well as the destabilization mechanism involved for the LiBH₄/SrH₂ system have been investigated in this work. No catalysts were doped into the LiBH₄/SrH₂ system, which enables the investigation of the pure effect from SrH₂.

2. Experimental details

2.1. Sample preparation

Commercial LiBH₄ powder (95%, Alfa Aesar) was used as-received without further purification. SrH₂ powder was synthesized by reacting metallic Sr scraps (99%, Alfa Aesar) with hydrogen (99.999%). The 6LiBH₄ + SrH₂ mixture was ball-milled under 0.5 MPa hydrogen pressure at a rotation speed of 400 rpm for only 2 h by using a QM-1SP planetary mill. Stainless steel vials (250 mL in volume) and balls (10 mm in diameter) were used. The ball to sample weight ratio was 20:1. To avoid air-exposure, all sample handling was carried out in an Ar-filled glove box equipped with a purification system keeping the typical O_2/H_2O levels below 1 ppm.

2.2. Sample characterization

Dehydrogenation and rehydrogenation properties of the samples were examined based on the volumetric method by using a carefully calibrated Sieverts-type apparatus (Suzuki Shokan Co., Ltd., Japan). The temperature dependence of dehydrogenation was determined by heating the sample from ambient temperature to

^a School of Materials Science and Engineering, Anhui University of Technology, Maanshan, Anhui 243002, PR China

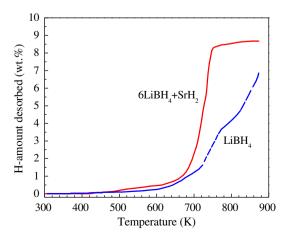
^b State Key Lab of Silicon Materials, Zhejiang University, Hangzhou 310027, PR China

^{*} Corresponding author. Tel.: +86 555 2311891; fax: +86 555 2311570. E-mail address: zhang03jp@yahoo.com.cn (Q.A. Zhang).

873 K at a heating rate of 2 K/min. Isothermal dehydrogenation was performed by quickly heating and then keeping the sample at a given temperature. The hydrogen back pressure for the above temperature ramp and isothermal dehydrogenation examinations was below 0.1 MPa. Pressure–composition (P–C) isotherms were measured at 693, 723 and 753 K to investigate the thermodynamic property of the LiBH $_4$ /SrH $_2$ system in the dehydrogenation process. The rehydrogenation experiment was carried out at 723 K under an initial hydrogen pressure of 8.0 MPa.

To elucidate the phase components of the ball-milled, dehydrogenated and rehydrogenated 6LiBH $_4$ + SrH $_2$ mixtures, X-ray diffraction (XRD) measurements were performed using a Rigaku D/Max 2500VL/PC diffractometer with Cu K α radiation at 50 kV and 150 mA. The XRD samples were loaded and sealed in a special holder that can keep the sample under argon atmosphere in the course of measurement.

3. Results and discussion


3.1. Dehydrogenation behavior

3.1.1. Thermal behavior upon dehydrogenation

For understanding the dehydrogenation stage of the LiBH $_4$ /SrH $_2$ system, Fig. 1 gives the amount of hydrogen desorbed as a function of temperature for the as-milled 6LiBH $_4$ + SrH $_2$ mixture at a heating rate of 2 K/min. For comparison, the hydrogen desorption curve of the pristine LiBH $_4$ sample ball-milled for 2 h was also measured. It is observed that dehydrogenation of the LiBH $_4$ /SrH $_2$ system starts around 490 K, and the majority of hydrogen is released in the temperature range of 660–760 K. A dehydrogenation amount of 8.7 wt.% was totally achieved. In contrast, the pristine LiBH $_4$ released hydrogen sluggishly, and the amount of hydrogen desorbed up to 873 K is only 6.8 wt.%. This value is much lower than the theoretical one (13.8 wt.%). Evidently, the thermal stability of LiBH $_4$ can be remarkably reduced by using SrH $_2$ as a destabilizing additive.

It should be noted from Fig. 1 that dehydrogenation of the LiBH₄/SrH₂ system proceeds in a single step, i.e., through a direct reaction between LiBH₄ with SrH₂. In comparison with the two-step dehydrogenation in the LiBH₄/MgH₂ system [25], such a feature enables the LiBH₄/SrH₂ system to release hydrogen prior to the decomposition of SrH₂. That is, LiBH₄ is also effective in lowering the stability of SrH₂, which is similar to the results observed in the LiBH₄/CaH₂ and LiBH₄/CaF₂ systems [7,21,26].

Fig. 2 presents the XRD patterns of the $6 \text{LiBH}_4 + \text{SrH}_2$ samples after ball-milling and dehydrogenation at 723 K. It can be seen that the as-milled sample consists mainly of LiBH_4 and SrH_2 , indicating that no definite reaction occurred between the starting materials during milling. After dehydrogenation, as indicated in Fig. 2b, SrB_6 and LiH can be formed without the remaining LiBH_4 or SrH_2 . The XRD results suggest that the $\text{LiBH}_4/\text{SrH}_2$ system is dehydrogenated according to the following reaction:

Fig. 1. Temperature dependence of dehydrogenation for the 2 h ball-milled $6 \text{LiBH}_4 + \text{SrH}_2$ mixture and the pristine LiBH_4 at a heating rate of 2 K/min.

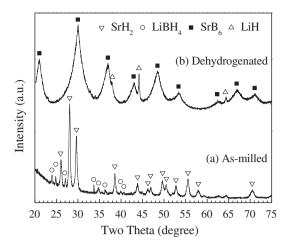


Fig. 2. XRD patterns of the LiBH $_4$ /SrH $_2$ system: (a) as-milled and (b) dehydrogenated at 723 K.

$$6LiBH_4 + SrH_2 \rightarrow SrB_6 + 6LiH + 10H_2 \tag{2}$$

The theoretical hydrogen amount desorbed from this reaction can be calculated to be 9.1 wt.%, which is consistent with the measured value of 8.7 wt.% (see Fig. 1).

3.1.2. Dehydrogenation thermodynamics

In order to evaluate the dehydrogenation thermodynamics of the LiBH₄/SrH₂ system, P–C isotherms (see Fig. 3) were measured at 693, 723 and 753 K, respectively. It can be seen that the dehydrogenation isotherms have a well-defined plateau region, and the equilibrium pressures vary from 0.49 MPa at 693 K to 0.94 MPa at 753 K. It is well known that the enthalpy change (ΔH) and entropy change (ΔS) for a dehydrogenation reaction can be calculated from the van't Hoff equation:

$$ln P = \left[-\Delta H / (RT) \right] + \Delta S / R \tag{3}$$

where P is the equilibrium pressure at absolute temperature T, and R is the gas constant. Fig. 4 gives the van't Hoff plot of the LiBH₄/SrH₂ system by using the dehydrogenation equilibrium pressures at 4.0 wt.% (see Fig. 3). According to the equation shown in Fig. 4, the enthalpy and entropy changes for the dehydrogenation of the LiBH₄/SrH₂ system can be determined to be 48 kJ/mol H₂ and 82 J/(mol K) H₂, respectively. The ΔS value here is rather different from the typical value of \sim 130 J/(mol K) H₂ for most metal hydrides. This difference can be mainly attributed to the higher entropy of LiBH₄

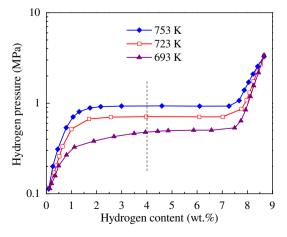


Fig. 3. Dehydrogenation P-C isotherms of the $LiBH_4/SrH_2$ system at different temperatures.

Download English Version:

https://daneshyari.com/en/article/1614940

Download Persian Version:

https://daneshyari.com/article/1614940

<u>Daneshyari.com</u>