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a b s t r a c t

The non-isothermal kinetics of primary crystallization processes is studied from numerically generated
curves and their predictions have been tested in several nanocrystallization processes. Single processes
and transformations involving two overlapped processes in a non-isothermal regime have been gener-
ated and deviations from isokinetic behavior are found when the overlapped processes have different
activation energies. In the case of overlapped processes competing for the same type of atoms, the heat-
ing rate dependence of the obtained Avrami exponent can supply information on the activation energies
of each individual processes. The application to experimental data of nanocrystallization processes is con-
sistent with a limited growth approximation. In the case of preexisting crystallites in the as-cast samples,
predictions on the heating rate dependence of the obtained Avrami exponents of multiple processes have
been confirmed.

� 2012 Elsevier B.V. All rights reserved.

1. Introduction

The study of the devitrification kinetics in glassy metals has re-
ceived attention since their discovery [1–3]. The application of the
classical theory of crystallization (based on nucleation and growth
processes) to this process was also early adapted [2,3]. This theory
was developed independently by Kolmogorov [4,5], Jhonson and
Mehl [6], and Avrami [7] (JMAK theory) in the late 1930s of the last
century to be applied to isothermal polymorphic transformations.
However, it can be appropriately extended to transformations
implying compositional changes [8,9] and to non-isothermal pro-
cesses [10–19].

In this work, a direct extension of the classical theory of isother-
mal crystallization to non-isothermal processes, previously pro-
posed by the authors [16], is revised in order to solve deviations
observed for low transformed fractions. In the frame of this ap-
proach, the kinetic analysis of the primary crystallization of several
metallic glasses including the development of single or multiple
phases is evaluated. Nanocrystallization processes fulfill most of
the five postulates of Kolmogorov (listed in Ref. [5]). In the case
of nanocrystallization processes, the crystallites can be considered
spherical (isotropic growth) and non-random nucleation is claimed
to occur (due to non-homogeneity of the matrix [20], nucleation
enhancement by Cu clustering phenomena [21–23] or formation
of agglomerates in Hitperm alloys [24]). However, random

nucleation can be assumed as an approximation for a global view
of the transformation.

2. Kinetics of crystallization

2.1. Isothermal processes

In JMAK theory, the extended transformed fraction, X⁄ [5] corre-
sponds to the fraction of the system that should be transformed if
any growing crystal could freely grow without impinging with an-
other growing crystal (i.e., if no geometrical impingement oc-
curred). It is obtained from the nucleation rate, I = dN/dt (N being
the number of nuclei formed per unit volume, and t, the time),
and the rate of linear growth, G = dR/dt (R being the average radius
of the crystals). For isotropic growth in three dimensions:

X� ¼ 4p
3

Z t

0
Iðt0Þ

Z t

t0
GðsÞds

� �3

dt0 ð1Þ

where crystals are considered to be spherical. Assuming power laws
for nucleation rate I = I0tb and linear growth G = G0ta, results:

X� ¼ 4p
3

I0G3
0

C
t3ðaþ1Þþbþ1 ¼ Ktn ¼ ðktÞn ð2Þ

with C a constant, k = K1/n, the frequency factor, and n, the Avrami
exponent. The value of this exponent can be decomposed as
n = nI + 3nG, where nI = 1 + b corresponds to nucleation (with a
nucleation rate constant if b = 0 (nI = 1), increasing I(t) if b > 0 and
decreasing I(t) if b < 0); and nG = a + 1 corresponds to growth
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(nG = 1/2, for diffusion controlled growth, G = G0/t1/2, and nG = 1 for
interface controlled growth, G = G0).

The relationship between X⁄ and the actual transformed frac-
tion, X, is obtained considering a statistical geometrical
impingement:

dX
dX�
¼ 1� X ð3Þ

The JMAK equation results when Eqs. (2) and (3) are combined:

X ¼ 1� exp �ðktÞn
� �

ð4Þ

2.2. Extension to non-isothermal processes

Nakamura et al. [25] proposed a general expression of the trans-
formation equation to extend JMAK equation to non-isothermal
processes, which for a constant heating rate b results:

X ¼ 1� exp �ð1=bnÞ
Z T

To

kðTÞdT
� �n( )

ð5Þ

where T is the temperature, TO is the onset temperature and
k(T) = k0 exp(�Q/kBT) is a temperature dependent frequency factor,
which is assumed to follow an Arrhenius law with Q, the activation
energy, and kB, the Boltzmann constant.

Later on, some of the present authors simplified Nakamura’s
expression considering the following approximation [16]:

K 00exp �Q=kBT½ �ðT � T 0OÞ ¼
Z T

TO

kðTÞdT ð6Þ

In previous works [16,26–30], it was implicitly assumed
T 0O ¼ TO (the onset temperature of the process). However, a deeper
insight into this relationship is required to appreciate the effect of
T 0O on the estimated values.

If we divide the two terms of Eq. (6) by k(T) we obtain a function
A(T):

k00
k0
ðT � T 0OÞ ¼

b
R t

0 kðTÞdt
kðTÞ ¼ AðTÞ ð7Þ

which, according to Eq. (6), can be approximated to a straight line
for a certain temperature range and, thus:

dAðTÞ
dT

¼ k00
k0
¼ DðTÞ ð8Þ

The value of T 0O which leads to the best fitting depends on the
value of the temperature T at which the approximation will be
performed:

T 0O ¼ T � AðTÞ
DðTÞ ð9Þ

Fig. 1a shows the value of T 0O as a function of the temperature, T,
at which the approximation of Nakamura’s expression is per-
formed for activation energies in the range 0.5–10 eV. Except for
Q < 2 eV, a very good linear behavior can be found in a wide
temperature range (from �100 K to >1000 K), which extends far
beyond the temperature range of interest for practical uses in the
analysis of devitrification processes of amorphous alloys. As an
example, for Q = 4 eV (typical value for primary crystallization pro-
cesses of Fe-based amorphous alloys [3]) the fitting gives
T 0O ¼ ½0:48993ð2ÞT þ 2:43ð1Þ� K.

As Q changes from 3 to 10 eV, the slope of the straight line in-
creases 2% and the value of the intercept with the Y-axis decreases
from �3 K to 0.3 K. These results allow us to propose an approxi-
mated value of T 0O for practical applications:

T 0O ¼ TP=2 ð10Þ

where TP is the crystallization peak temperature and thus, the tem-
perature around which it is found the thermal range of interest to
perform the simplification of Nakamura’s expression. It is worth
mentioning that the present result is independent of the values of
b, k0 and k00. Moreover, as this approximation affects X⁄, it is also
independent of whether the kinetics of transformation follows
JMAK equation or an expression considering a generalized impinge-
ment parameter [31,32].

In order to appreciate the goodness of the proposed approxima-
tion, Fig. 1b shows the two terms of Eq. (7) using T 0O ¼ TP=2 along
with the corresponding curve of the transformation rate generated
using Nakamura’s equation (k0 = 1025 s�1, n = 4, Q = 4 eV, b = 10 K/
min) as will be explained below. Only one free parameter, k00=k0,
has been used to fit A(T) function in the temperature range from
730 to 760 K resulting k00k0 ¼ 5:314ð3Þ.

3. Results. Validity of the approximation using numerically
generated curves

3.1. Crystallization processes implying the formation of a single phase

In order to appreciate the effect of T 0O on the Avrami exponent
obtained applying the approximation of a direct extension to non-
isothermal processes of Avrami equation, a systematic procedure
was followed. Kinetic curves of X(t) were generated using Eq. (5)
for different values of b (from 10 to 60 K/min), Q and n; and
Kissinger method [33] was applied to recalculate the activation

Fig. 1. (a) Values of T 0O as a function of the temperature at which the approximation
of Nakamura expression is performed for different values of activation energy. The
dashed red line is a linear fitting to the curve corresponding to Q = 4 eV. (b) Left
axis: comparison between A(T) (symbols) and the proposed approximation
k00
k0
ðT � Tp

2 Þ (red line). Right axis: corresponding dX/dt curve generated using
Nakamura kinetic equation at 10 K/min (Q = 4 eV; n = 4) (black line). (For interpre-
tation of the references to color in this figure legend, the reader is referred to the
web version of this article.)
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