Journal of Alloys and Compounds 539 (2012) 103-107

Contents lists available at SciVerse ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jalcom

A comparative study of the hydrogen storage properties of $\rm LiBH_4$ doping with CaHCl and CaH_2

Kun Jiang, Xuezhang Xiao, Lixin Chen*, Leyuan Han, Shouquan Li, Hongwei Ge, Qidong Wang

Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China

ARTICLE INFO

Article history: Received 22 March 2012 Received in revised form 6 June 2012 Accepted 10 June 2012 Available online 19 June 2012

Keywords: LiBH₄ CaHCl additive Hydrogen storage properties De/rehydrogenation mechanism

ABSTRACT

In the present work, CaHCl was synthesized as an additive for the LiBH₄ complex hydride. The hydrogen storage properties of LiBH₄ doping with CaHCl was firstly investigated and compared to LiBH₄ doping with CaHCl exhibits more promising catalytic properties than that of CaH₂: doping with CaHCl can decrease the thermodynamic stability of LiBH₄ and improve the low temperature dehydrogenation kinetics of LiBH₄ greater than CaH₂ do. The activation energy of the dehydriding step of LiBH₄ decreases from 160.11 kJ/mol in 6LiBH₄ + CaH₂ system to 112.39 kJ/mol in 6LiBH₄ + CaHCl system. The dehydrogenation scheme of 6LiBH₄ + CaHCl system is different from 6LiBH₄ + CaH₂ system, and its dehydrogenation reaction is 6LiBH₄ + CaHCl \rightarrow 5LiH + LiCl + CaB₆ + 10H₂↑. However, due to the stable LiCl formed after dehydrogenation, the rehydrogenation route of 6LiBH₄ + CaHCl system is the same as 6LiBH₄ + CaH₂ system cannot be fully rehydrogenated. It is also observed that 6LiBH₄ + CaHCl system has more stable cyclic dehydrogenation properties than 6LiBH₄ + CaH₂ system.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Borohydrides are some potential candidates as hydrogen storage materials for automobile on-board application because of their high gravimetric and volumetric hydrogen densities [1–7]. In particular, LiBH₄ with a theoretical gravimetric hydrogen density of 18.4% is being widely and intensely investigated [6–9]. Dehydriding reaction of LiBH₄ has been expressed as the following Eq. (1), releasing 13.8 wt.% of hydrogen

$$\text{LiBH}_4 \rightarrow \text{LiH} + \text{B} + 3/2\text{H}_2 \uparrow \tag{1}$$

However, the very strongly bound hydrogen of LiBH₄ resulted in the high dehydrogenation temperature of LiBH₄. Moreover, the rehydrogenation condition of LiBH₄ is extremely hard, restraining its practical applications.

Vajo et al. [10,11] demonstrated the "destabilization concept" in the LiBH₄-MgH₂ system, forming the more stable MgB₂ phase to significantly decrease the dehydrogenation temperature relative to pure LiBH₄. Since then, the other destabilized reaction $6LiBH_4 + -$ CaH₂ system has received much attention and been investigated experimentally [12–18]. This system can reversibly store 11.7 wt.% hydrogen through the Eq. (2):

$$6\text{LiBH}_4 + \text{CaH}_2 \leftrightarrow 6\text{LiH} + \text{CaB}_6 + 10\text{H}_2 \uparrow$$
(2)

* Corresponding author. Tel./fax: +86 571 8795 1152. *E-mail address:* lxchen@zju.edu.cn (L. Chen). Jin et al. [13] and Pinkerton et al. [15] reported that $6LiBH_4 + - CaH_2$ with TiCl₃ as a catalytic additive can reversible re/dehydriding of about 9 wt.% hydrogen. Lim et al. [14,17] investigated the dehydrogenation and rehydrogenation behaviors of $6LiBH_4 + CaH_2$ with NbF₅. It is demonstrated that about 6 wt.% hydrogen storage capacity is achieved at 10th cycle with 15% NbF₅.

On the other hand, Cl-substitution in the borohydrides has been investigated by mechanochemical reactions between $M(BH_4)_n$ and MCl_n (M = Li, Na, Ca) [19–21]. Arnbjerg et al. provided a direct evidence of dissolution of LiCl into LiBH₄, and formation the solid solution $Li(BH_4)_{1-x}Cl_x$ [19]. $Na(BH_4)_{1-y}Cl_y$ have also been synthesized and investigated by Olsen et al. [20]. Rongeat et al. [21] reported that effect of the presence of chlorides on the synthesis and decomposition of Ca(BH₄)₂, and found that by ball-milling 2LiBH₄ + CaCl₂, the final products are a combination of Ca(BH₄)_{2-y}Cl_y and Li(BH₄)_{1-x}Cl_x which have the lower dehydrogenation temperature than pure LiBH₄. Lee et al. [22] explored the hydrogen storage properties of CaCl₂ doped Ca(BH₄)₂, and reported that during the dehydrogenation of the mixture Ca(BH₄)₂ – CaCl₂, the formation of CaHCl through Eq. (3) provided a thermodynamic driving force to the decomposition of Ca(BH₄)₂ into CaH₂:

$$CaH_2 + CaCl_2 \leftrightarrow CaHCl \tag{3}$$

Through the discussion above, the formation of CaB_6 which is more stable than B, and the solid solution $M(BH_4)_{n-x}Cl_x$ formed

Autorial of ALLOSS AND COMPOUNDS COMPOUNDS Territorial Compound of Autorial Compound of Autorial Compound Compo

^{0925-8388/\$ -} see front matter @ 2012 Elsevier B.V. All rights reserved. http://dx.doi.org/10.1016/j.jallcom.2012.06.039

by Cl-substitution can both improve the hydrogen storage properties of LiBH₄. Therefore, in this work, we investigated the effect of CaHCl doping on the hydrogen storage properties of LiBH₄, identified the de/rehydrogenated products, and discussed the possible de/rehydrogenation routes.

2. Experimental

LiBH₄. (assay 95%, Acrös), CaH₂ (assay 95%, Alfa Aesar) and CaCl₂ (assay 96%, Alfa Aesar) were used as starting materials. CaHCl was synthesized by ball-milling the mixture CaH₂ and CaCl₂ (molar ratio of 1:1) for 10 h and then heat treating at 450 °C for 12 h under 1 MPa of H₂ pressure. 1 g mixture of LiBH₄ and CaHCl in a molar ratio of 6:1 was put into a stainless steel vial with a ball-to-powder ratio of 40:1. The ball-milling process was carried out on a planetary ball mill (QM-3SP4, Nanjing, China) under 1 MPa hydrogen pressure at a speed of 400 rpm for 4 h. The milling process was paused 0.1 h for every 0.4 h to avoid an increase of temperature in the sample during the ball-milling.

The dehydrogenation and rehydrogenation properties of the synthesized products were conducted by a manually controlled temperature program desorption (TPD) apparatus. Before testing, this Sievert-type TPD apparatus was adjust by a HyEnergy PCT Pro 2000 automated instrument. About 150 mg products were used to carry out the TPD measurement which was performed under vacuum condition from room temperature to 500 °C with a heating rate of 2 or 5 °C/min and maintained at 500 °C for 2 h. All samples prior to rehydrogenation were completely dehydrogenated according to the same conditions as TPD measurements above. The isothermal rehydrogenation was done under different H₂ pressure (80, 100 MPa) at 450 or 500 °C for 10 h.

The powder X-ray diffraction measurements were performed on an X'Pert PRO (PANalytical) X-ray diffractometer with Cu Kα radiation. A special container which was fully filled with high purity Ar was prepared to keep the samples from air exposure during sample transferring and testing. The sample window was covered by a layer of transparent tape film that did not show a particular peak. The FTIR spectra were acquired at ambient condition in air by using a Bruker Tensor 27 FTIR spectrometer. The differential scanning calorimetry, thermogravimetric and mass spectrometry (DSC-TG-MS) measurements were performed on a Netzsch DSC 449F3 coupled with a Netzsch Q430C mass spectrometry at different heating rates from room temperature to 550 °C at a heating rate of 5 °C/min under flowing argon condition (high purity, 50 mL/min).

All materials and samples were handled in an argon-filled glove box where water vapor and oxygen levels were kept below 1 ppm.

3. Results and discussion

3.1. Synthesis of CaHCl

The XRD pattern of the product synthesized by ball-milling the mixture of $CaH_2 + CaCl_2$ (molar ratio 1:1) and heat-treating at 450 °C for 12 h under 1 MPa hydrogen pressure is shown in Fig. 1. Except the few peaks of CaO which come from the air

Fig. 1. XRD pattern of the product synthesized by ball-milling the mixture of $CaH_2 + CaCl_2$ and heat-treating at 450 °C for 12 h under 1 MPa hydrogen pressure.

contamination of the sample [14], the other peaks are all assigned to CaHCl. It indicates that CaHCl was totally formed by ball-milling and heat treating the mixture of CaH₂ and CaCl₂. The thermodynamic stability of CaHCl synthesized in our experiment is tested by DSC-TG measurement.

From the results of DSC-TG measurement shown in Fig. 2, it is found that CaHCl is still stable even the temperature increased to $550 \,^{\circ}$ C.

3.2. Thermodynamics and kinetics properties of 6LiBH4 + CaHCl system

In order to investigate the dehydrogenation properties of $6LiBH_4$ + CaHCl system, the pristine $LiBH_4$, and $6LiBH_4$ + CaH₂ system are used for drawing a comparison.

First of all, the DSC and MS profiles of LiBH₄, 6LiBH₄ + CaHCl and 6LiBH₄ + CaH₂ systems at a heating rate of 5 °C/min are shown in Fig. 3. The dehydrogenation process of 6LiBH₄ + CaH₂ system involves three steps, corresponding to the three endothermic peaks of which the peak temperature are 416.6, 468.5, and 480.2 °C, excluding the structural transition and melting peaks of LiBH₄ at approximately 110 and 280 °C. Meanwhile, the decomposition process of 6LiBH₄ + CaHCl system mainly involves four steps of which the peak temperature are 400.8, 455.7, 474.0, 485.1 °C, respectively. The first step dehydrogenation of 6LiBH₄ + CaHCl system not only is ahead of 6LiBH₄ + CaH₂ system, but also releases more hydrogen than 6LiBH₄ + CaH₂ system.

The similar phenomenon observed in the dehydrogenation kinetics curves of $6LiBH_4 + CaHCl$ system and $6LiBH_4 + CaH_2$ system is shown in Fig. 4 (at a heating rate of 5 °C/min). From the above results, it can be seen that $6LiBH_4 + CaHCl$ system starts to release hydrogen earlier than $6LiBH_4 + CaH_2$ system. Before the first most half of dehydrogenation process, the dehydriding rate and hydrogen desorption mass of $6LiBH_4 + CaHCl$ system are superior to those of $6LiBH_4 + CaH_2$ system. Although the theoretical hydrogen capacity of $6LiBH_4 + CaHCl$ system is lower than $6LiBH_4 + CaH_2$ system, $LiBH_4$ doping with CaHCl can decrease the thermodynamic stability of $LiBH_4$ and improve the low temperature dehydrogenation kinetics of $LiBH_4$ greater than that of CaH_2 do.

Following, we calculate the activation energy of LiBH₄ dehydrogenation in $6LiBH_4 + CaHCl$ and $6LiBH_4 + CaH_2$ system according to the Kissinger equation [23].

$$\ln(\beta/T_m^2) = -E_a/RT_m + \ln(AR/E_a)$$
(4)

Fig. 2. DSC–MS curves of CaHCl synthesized by ball-milling the mixture of CaH₂ + CaCl₂ and heat-treating at 450 °C for 12 h under 1 MPa hydrogen pressure.

Download English Version:

https://daneshyari.com/en/article/1615704

Download Persian Version:

https://daneshyari.com/article/1615704

Daneshyari.com