Contents lists available at SciVerse ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jallcom

Subsolidus phase relations in CaO-In $_2O_3$ -B $_2O_3$ system and crystal structure of CaInBO $_4$

H.K. Li^{a,b}, G.M. Cai^{a,b,*}, J.J. Fan^{a,b}, Z.P. Jin^{a,b}

^a Science Center for Phase Diagram & Materials Design and Manufacture, Central South University, Changsha, Hunan 410083, PR China
^b School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, PR China

ARTICLE INFO

Article history: Received 21 September 2011 Received in revised form 19 November 2011 Accepted 29 November 2011 Available online 8 December 2011

Keywords: Calcium indium borate Solid state reactions Crystal structure X-ray diffraction

ABSTRACT

Subsolidus phase relations of CaO–In₂O₃–B₂O₃ system have been investigated mainly by the conventional solid-state reaction technique and powder X-ray diffraction method. There are nine definite three-phase regions under present experimental conditions. Six binary compounds and one ternary compound were found to exist in this system. Crystal structure of the ternary compound CalnBO₄ was determined from X-ray powder diffraction data using Rietveld method. It crystallizes in the orthorhombic space group Pnma (No. 62) with *a* = 10.3120(3)Å, *b* = 3.42519(8)Å, *c* = 9.5150(3)Å, *V* = 336.07(2)Å³ and *Z* = 4. Mixed occupancies were confirmed in this structure, Ca and In atoms are distributed between two atom sites: 93.6%Ca and 6.4%In occupy one site, 93.6%In and 6.4%Ca occupy another. Two In(Ca)O₆ octahedra and two Ca(In)O₇ polyhedra are linked each other by sharing edges to form ribbons in the *a*-*c* plane and extend infinitely along the direction of the *b* axis. The infrared spectrum of CalnBO₄ has been measured, which is consistent with the crystallographic study. In general, compounds MRBO₄ (M and R are divalent and trivalent cations, respectively) are in a large family of monoborates with different structure types strictly depending on the relative size of the M and R ions.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Over a long period of time, borates have been established as useful functional materials with rich crystal structure [1–3], wide transparency spectra range, and large band gap. The trivalent-metal or rare-earth-metal borates have been given intense attention because of their outstanding optical properties, for instance, K₂Al₂B₂O₇ (KAB) [4] for second harmonic generation or YBO₃, Li₆GdB₃O₉ and Ba₃InB₉O₁₈ for host of phosphor [5-7]. Our group have made systematic surveys on the $MO-R_2O_3-B_2O_3$ (M = alkaline-earth metal, R = Sc, In, rare-earth metal) systems to search for new functional materials. Very recently, we investigated subsolidus phase relations in CaO-In₂O₃-B₂O₃ system based on exploratory syntheses via solid-state reactions, which led to the discovery of the ternary compound CaInBO₄. Blasse [8] and Capponi et al. [9] have ever reported the lattice parameters of CaInBO₄. However, the crystal structure of CaInBO₄ was not reported until now. In this work, the crystal structure of CaInBO₄ was investigated and determined by Rietveld method, with structure CaYBO₄ as a

* Corresponding author at: School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, PR China. Tel.: +86 0731 88877 732. *E-mail addresses*: gmcai2002@163.com, caigemei@csu.edu.cn (G.M. Cai). reference [10]. In addition, structure types of compounds MRBO₄ (M=divalent cations; R=trivalent cations) were reviewed in this paper.

2. Experiment

Samples were synthesized by high temperature solid state reactions. Stoichiometric mixtures of CaCO₃ (spectral reagent), In₂O₃ (analytical reagent), and H₃BO₃ (analytical reagent) were ground into powders of 200–300 mesh in the agate mortar. The mixtures were preheated in corundum crucibles for 12 h at 600 °C to decompose H₃BO₃ and CaCO₃. Then they were cooled, reground and sintered at 800–1350 °C (depending on their compositions) for 24 h. Finally, all the samples were naturally cooled to room temperature. In all cases, special care was taken to add extra 0.2 mol% H₃BO₃ in order to offset the losses of B₂O₃ in the procedure of synthesis.

X-ray powder diffraction (powder XRD) technology, Inorganic Crystal Structure Database (ICSD release 2011) and Powder Diffraction File (PDF release 2009) were used for phase analysis of the samples. The powder XRD patterns were collected on an X-ray Rigaku diffractometer D/MAX-2500 with Cu K α radiation and graphite monochromator operated at 40 kV, 150 mA. The samples were considered to reach phase equilibrium when their powder XRD patterns showed no change upon successive heat treatments. Data for crystal structure analysis were collected at room temperature in the step-scanning mode with a step size 0.02° (2 θ), counting time 2 s per step and 2 θ range of 10–130°.

With the samples dissolved in nitric acid at boiling point for 1 h, the atomic ratios of Ca, In, and B for phases were measured by inductively coupled plasma atomic emission spectrometry on a Perkin Elmer ICP/6500 spectrometer.

Infrared (IR) spectroscopy was carried out with the objective of specifying and comparing the coordination of boron in the title compound. The mid-infrared

^{0925-8388/\$ -} see front matter © 2011 Elsevier B.V. All rights reserved. doi:10.1016/j.jallcom.2011.11.145

Table I	
List of phase identification in	the system CaO-In ₂ O ₃ -B ₂ O ₃

Samples	CaO (at.%)	InO _{1.5} (at.%)	BO _{1.5} (at.%)	Synthesis temperature	Phase composition
1	20	5	75	800	$CaB_6O_{10} + CaB_2O_4 + InBO_3$
2	40	5	55	950	$Ca_2B_2O_5 + CaB_2O_4 + InBO_3$
3	33.3	22.2	44.5	1000	$T + Ca_2B_2O_5 + InBO_3$
4	50	5	45	950	$T + Ca_2B_2O_5 + Ca_3B_2O_6$
5	25	40	35	1200	$T + InBO_3 + In_2O_3$
6	30	45	25	1200	$Ca_{3}B_{2}O_{6} + In_{2}O_{3}$
7	40	40	20	1200	$Ca_{3}B_{2}O_{6} + In_{2}O_{3} + CaIn_{2}O_{4}$
8	60	25	15	1000	$Ca_3B_2O_6$ + CaO + $CaIn_2O_4$
9	70	15	15	1200	$Ca_3B_2O_6$ + CaO + $CaIn_2O_4$
Н	33.4	66.6	0	1350	CaIn ₂ O ₄
Т	33.3	33.3	33.4	1050	$T + In_2O_3$

spectrum was obtained at room temperature via a Perkin-Elmer 983G infrared spectrophotometer with KBr pellets as standards. It was collected in a range from 400 to 2000 cm⁻¹ with a resolution of 1 cm⁻¹.

3. Results and discussion

3.1. Subsolidus phase relations in CaO–In₂O₃–B₂O₃ system

In the binary system CaO-B₂O₃, six binary compounds CaB₆O₁₀ [11], CaB₄O₇ [12], CaB₂O₄ [ICDD-PDF 76-0747], Ca₂B₂O₅ [ICDD-PDF 79-1516], Ca₃B₂O₆ [13], and Ca₂B₆O₁₁ [14], have been reported. In the work of Hart and Brown [15], Ca₂B₆O₁₁ was synthesized under a hydrothermal condition. We did not observe CaB₄O₇. Yet, there is a possibility that CaB₄O₇ decomposes into CaB₆O₁₀ and CaB₂O₄ above 800 °C. A detailed study of thermal stability of CaB₄O₇ will be necessary. The other four compounds were confirmed in our experiment.

In the system CaO–In₂O₃, two binary compounds have been reported, namely, CaIn₂O₄ [16], and Ca₃In₂O₆ [ICDD-PDF 73-0154]. According to the literature [17], Schenck and Müller-Buschbaum synthesized Ca₃In₂O₆ at above 2000 °C. So, only CaIn₂O₄ was obtained under our present work.

As for the binary system $In_2O_3-B_2O_3$, one binary compound $InBO_3$ was reported by [PDF 82-1188] and confirmed in our experiment.

Based on the phase identifications of eleven samples with different compositions as listed in Table 1, the subsolidus phase relations of CaO–In₂O₃–B₂O₃ system were determined under present experimental conditions, as shown in Fig. 1. There are 9 definite three-phase regions. No solid solution regions were observed in all binary and ternary compounds, and two-phase regions are all jointlines of relevant two compounds. Ternary compound, CaInBO₄ was found and confirmed in this system. Comparing with our work, the powder XRD pattern [9] reported in ICDD-PDF 27-1055 was found incomplete. Moreover, the crystal structure of this compound has no report in previous literatures. Thus, we reinvestigated the crystal structure of compound CaInBO₄, which will be discussed in the following section.

3.2. Crystal structure of CaInBO₄

Using the program DICVOL04 [18] by successive dichotomy method with Si as the internal standard, all the reflections $(2\theta \le 50^\circ)$ of the compound CaInBO₄ can be well indexed on the basis of an orthorhombic unit cell with lattice parameters a = 10.3134(9)Å, b = 9.5159(7), and c = 3.4243(1)Å. Reflection conditions with 0 k l: k + l = 2n, h k 0: h = 2n, h 0 0: h = 2n, 0 k 0: k = 2n, and 0 0 l: l = 2n are consistent with space group Pn2₁a and Pnma. Comparisons between CaInBO₄ and CaYBO₄ in crystal system, lattice parameters and powder XRD pattern show that the two compounds may be isostructural. So we choose the space group Pnma.

Fig. 1. Subsolidus phase relations in the system CaO-In₂O₃-B₂O₃.

In addition, there is no efficiency of second harmonic generation (SHG) in powder samples of CaInBO₄ using the Kurtz–Perry technique [19], which suggests centrosymmetric Pnma space group is more probable.

Taking CaYBO₄ as the preliminary crystal structural model, we refined the structure parameters of CalnBO₄ from the powder XRD data by the Rietveld method [20] using the program FullProf_suite [21]. The profile range of data used for structure refinement is 10–130° in 2θ , and the Pseudo-Voigt function was used as peak shape function. A total of 42 parameters were refined in the refinement, including background parameters, profile parameters, and structural parameters. As for atomic coordinates, all atoms are located on the crystal lattice position 4*c* similar to the case for CaYBO₄ [10]. The agreement factors in the structural refinement finally were converged to R_B = 4.56%, R_P = 7.37%, R_{WP} = 10.9% and S = 2.67, which indicates the structure model is quite right. Fig. 2 shows the final refinement pattern. Details of Rietveld refinement and crystal data are given in Table 2. Positional parameters obtained by the Rietveld refinement are listed in Table 3. By the way, we have

Table 2

Details of Rietveld refinement and crystal data for the structure CaInBO₄.

Sample	Multi-crystal powder
Diffractometer	Rigaku D/MAX-2500
Radiation type	Cu Kα
Monochromator	Graphite
Wavelength (Å)	1.5405
Refined profile range (° 2θ)	10-130
Step size (°2 θ)	0.02
Step scan time per step (s)	2
Number of structure parameters	29
Number of profile parameters	13
R _B	4.56%
R _P	7.37%
R _{WP}	10.9%
S	2.67
Formula	CaInBO ₄
Symmetry	Orthorhombic
Space group	Pnma
a (Å)	10.3120(3)
b (Å)	3.42519(8)
<i>c</i> (Å)	9.3950(3)
Volume (Å ³)	336.07(2)
Ζ	4
Calculated density (g cm ⁻³)	2.73

Download English Version:

https://daneshyari.com/en/article/1616577

Download Persian Version:

https://daneshyari.com/article/1616577

Daneshyari.com