FISEVIER

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jallcom

Effect of Cu-doping on the electronic structure and optical properties of LaNi₅

Yu.V. Knyazev^{a,*}, A.V. Lukoyanov^{a,b}, Yu.I. Kuz'min^a, A.G. Kuchin^a

- ^a Institute of Metal Physics UD of RAS, 18 S.Kovalevskov Str., Ekaterinburg, 620990, Russia
- ^b Ural Federal University, 19 Mira Str., Ekaterinburg, 620002, Russia

ARTICLE INFO

Article history: Received 12 November 2010 Accepted 15 February 2011 Available online 22 February 2011

Keywords: Rare-earth alloys and compounds Electronic band structure Optical properties

ABSTRACT

Optical properties of intermetallic isostructural compounds $\text{LaNi}_{5-x}\text{Cu}_x$ (x = 0, 0.6, 1, 1.2) have been studied in the spectral range from 0.22 to 15 μm using the ellipsometry method. It was found that the substitution of copper for nickel leads to local changes in the optical conductivity spectra. Theoretical calculations of the electronic structure and interband optical conductivity of $\text{LaNi}_{5-x}\text{Cu}_x$ compounds with x = 0, 1, 2, 3 were performed in the generalized gradient approximation within the pseudopotential plane-wave method PWSCF. Both the optical spectroscopic measurements and theoretical calculations demonstrate the presence of a broad absorption band around 4eV associated with the Cu 3d \rightarrow Ni 3d electron transitions and increasing with the growth of copper content.

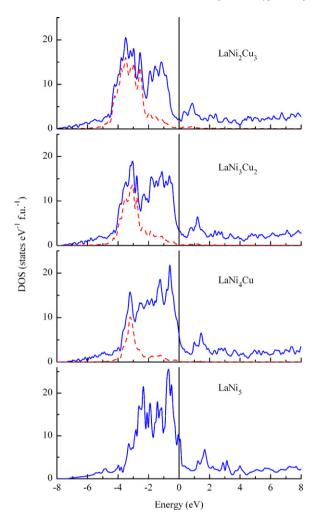
© 2011 Elsevier B.V. All rights reserved.

1. Introduction

The RNi_5 intermetallic compounds, where R is a rare earth or yttrium, have been the subject of a large number of investigations [1–3]. These compounds are known to show diverse magnetic and transport properties associated with both localized moments of R atoms and itinerant electrons of the Ni atoms. Also the LaNi $_5$ -type alloys attract considerable interest to their electronic properties due to the high capacity for hydrogen absorption [4–6].

In this context, substitutions at the La and Ni sites by atoms of por d-elements (with CaCu₅-type crystal structure of alloys remaining the same) were extensively used to improve the hydrogen storage capacity and achieve desirable electrochemical properties. For such ternary alloys $LaNi_{5-x}M_x$ dependences of some magnetic properties, electron specific heat and resistivity on x concentration were experimentally examined. Different ranges of paramagnetic solid solutions for LaNi_{5-x}Cu_x alloys were reported in the literature, covering the composition range from x = 0 to 5. A number of studies of these compounds revealed a direct correlation between physical parameters and electronic structure evolutions with the change of the copper content [7–10]. On the theoretical side, band structure results were reported for LaNi₅ [11-13] and its hydrides [14–16]. The X-ray photoemission study of these alloys showed the presence of the Cu 3d band, which is located almost 2 eV below the center of the Ni 3d band and is weakly hybridized with the latter one [7]. To explain these experimental data, one needs more detailed investigations on the electronic structure of LaNi_{5-x}Cu_x series for different x.

In this paper we report the investigations of the electronic structure of $LaNi_{5-x}Cu_x$ isostructural alloy series with x = 0, 1, 2, 3 using self-consistent ab initio calculations. Based on the calculated DOS the interband contribution to the optical conductivity was determined and analyzed. These theoretical results were found in qualitative agreement with the optical conductivity obtained from the ellipsometric studies of $LaNi_{5-x}Cu_x$ (x = 0, 0.6, 1, 1.2).


2. Calculation of the electronic structure

The LaNi₅ compound crystallizes in a hexagonal structure of CaCu₅ type with a space group P6/mmm. The nickel has two inequivalent crystallographic positions Ni1(2c) (1/32/30) and Ni2(3g) (1/201/2), La has a position (1a) (000). Electronic structure calculations without spin polarization were performed within the pseudopotential planewave method PWSCF, as implemented in the Quantum ESPRESSO package [17]. We used the generalized gradient approximation (GGA) in the Perdew-Burke-Ernzerhof version [18] for the exchange-correlation potential in the Rappe-Rabe-Kaxiras-Ioannopoulos form [19]. The Brillouin zone integration was performed with a $10 \times 10 \times 10$ k-point grid. A kinetic energy cutoff of 45 Ry was employed for the plane-wave expansion of the electronic states. To account for Cu atoms, for each x value (x = 1, 2, 3) we considered all possible configurations of Cu atoms substitutions for Ni and averaged over the self-consistent density of states.

The total density of states (DOS), as well as partial Cu 3d DOS, for $LaNi_{5-x}Cu_x$ compounds with x=0, 1, 2, 3 are plotted in Fig. 1. Although there are some general similarities, the structures of total DOS for x differ from each other. More intense maxima are located below the Fermi level which is situated on the top of bonding part of DOS. For parent $LaNi_5$ system narrow intensive peaks formed

^{*} Corresponding author.

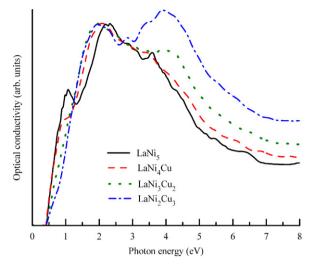

E-mail address: knyazev@imp.uran.ru (Yu.V. Knyazev).

Fig. 1. Calculated total DOS for LaNi $_{5-x}$ Cu $_x$ compounds with x = 0, 1, 2, 3. Dashed lines represent the partial contribution of the Cu 3d states. The Fermi level corresponds to zero.

mainly by the Ni 3d states are found in the range of 0-4 eV below the Fermi energy (E_F). These DOS for LaNi₅ are in good agreement with the reported results obtained in the other approaches [5-7]. Replacement of Ni atoms by Cu results in a rather independent Cu 3d band centered at approx. -3.3 eV for the compounds with x = 1, 2, 3. Its band width is considerably smaller with respect to the Ni 3d states. The total DOS width becomes larger after Cu substitution as compared with that in LaNi₅ and depends on the copper content. The spectral weight of DOS is transfered to the lower energies with doping. Simultaneously, a relative intensity and the width of the Cu 3d band around 3 eV increase. The density of states at the Fermi level is gradually reduced with the increase of Cu concentration. These results correlate with the X-ray photoelectron spectroscopy data [7] where both valence band and core level spectra of LaNi_{5-x}Cu_x system were analyzed. The computed DOS value at $E_{\rm F}$ follow the same trend as the low-temperature magnetic susceptibility and heat capacity of these compounds [7,10].

The calculated DOS of $\text{LaNi}_{5-x}\text{Cu}_x$ (x = 0, 1, 2, 3) were used to interpret experimental optical data. In order to calculate theoretical interband optical conductivity σ_{theor} we applied a rather simplified approximation technique [20] assuming that the direct and indirect (involving phonons) interband transitions are equally probable. Namely, we computed σ_{theor} as an integral function based on the convolution of the density of states located both below and above E_{F} . The low-energy interval of DOS $E_{\text{F}} \pm 0.2$ eV was excluded from the calculations because of prevailing Drude absorption and

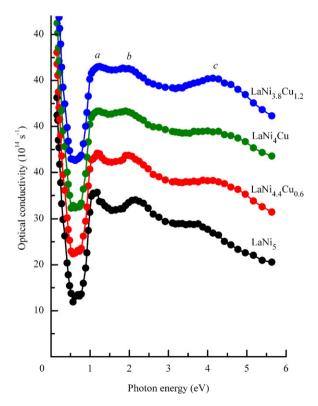


Fig. 2. Interband optical conductivities for $LaNi_{5-x}Cu_x$ calculated from the total DOS (in arbitrary units).

insignificant probabilities of the interband transitions in this region. The results of these calculations are shown in Fig. 2. The significant peak at $\sim\!\!2\,\text{eV}$ is the most pronounced feature in σ_{theor} typical for all alloys. The intensity of another maximum at $\sim\!\!4\,\text{eV}$ drastically increases with increasing Cu concentration (x = 2, 3). For LaNi_2Cu_3 the intensity of this feature is the largest one and comparable with that of the peak at 2 eV.

3. Optical conductivity results and discussion

The studies of optical properties were carried out at room temperature in the wavelength range $0.22-15\,\mu m$ (photon energy

Fig. 3. Energy dependences of the optical conductivity spectra of $LaNi_{5-x}Cu_x$ with x = 0, 0.6, 1, 1.2. The curves are shifted upward with respect to each other along the ordinate axis by 10 units.

Download English Version:

https://daneshyari.com/en/article/1617448

Download Persian Version:

https://daneshyari.com/article/1617448

<u>Daneshyari.com</u>