ELSEVIER

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jallcom

Direct synthesis of Fe_3O_4 nanopowder by thermal decomposition of Fe–urea complex and its properties

S. Asuha*, B. Suyala, X. Siqintana, S. Zhao

Chemistry & Environment Science College, Inner Mongolia Normal University, and Key Laboratory of Physics and Chemistry of Function Materials, Inner Mongolia, 81 Zhaowudalu, Huhhot 010022, China

A R T I C L E I N F O

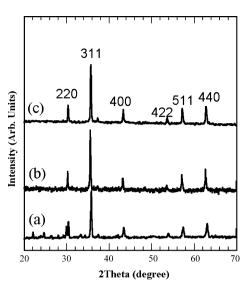
Article history: Received 29 July 2010 Received in revised form 21 November 2010 Accepted 22 November 2010 Available online 30 November 2010

Keywords: Magnetite Magnetic materials Magnetic measurements Thermal decomposition

ABSTRACT

An easy synthesis route of magnetite (Fe_3O_4) nanopowder is developed by using thermal decomposition of Fe–urea complex $([Fe(CON_2H_4)_6](NO_3)_3)$. The formation of Fe₃O₄ is confirmed from X-ray powder diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) measurements. The morphological properties and magnetic properties of the Fe₃O₄ are characterized by transmission electron microscopy (TEM) and magnetic measurements, respectively. By an increase in reaction temperature from 200 to 300 °C, the average crystallite size of the Fe₃O₄ nanopowder increases from 37 to 50 nm. Room temperature magnetization hysteresis curves show that the Fe₃O₄ nanopowder possesses ferrimagnetic characteristics. The saturation magnetization of the Fe₃O₄ nanopowder increases from 70.7 to 89.1 emu/g when the reaction temperature increases from 200 to 300 °C.

© 2010 Elsevier B.V. All rights reserved.


1. Introduction

Among several iron oxides, magnetite (Fe₃O₄) is a ferrimagnetic material with the highest saturation magnetization (Ms) of 92.0 emu/g. It is readily available and relatively stable under ambient conditions. Owing to these excellent properties, the Fe₃O₄ has been widely used in many applications such as magnetic recording, ferro-fluids, magnetic separation, magnetic resonance imaging, and catalysis for a long time [1-6]. When the particle size of Fe₃O₄ is decreased to nanoscales, it exhibits superparamagnetic behavior [7.8]. This nanosize effect together with biocompatible properties of the material are considered of great potential for applications in biotechnology and biomedicine including bio-assays, magnetic resonance imaging (MRI), magnetically guided drug delivery, and hyperthermia [9–11]. In recent years, the Fe₃O₄ attracts much attention from environmental applications in which it is used as an adsorbent, due to its high adsorption capacity for heavy metals and organic pollutants [12]. Iram et al. reported that Fe₃O₄ hollow nanospheres showed enhanced removal abilities for neutral red dye in wastewater [13]. Mahdavian et al. prepared polymeric-modified Fe₃O₄ nanopowder, and found that this nanopowder possessed large adsorption capacities for heavy metal cations, Cu²⁺, Pb²⁺, Ni²⁺, and Cd^{2+} [14]. Due to its excellent magnetic properties, the Fe₃O₄ is also widely used as a magnetic support of catalysts. For example, it has been demonstrated that Ag/Fe₃O₄ nanocomposite has high catalytic activities for degradation of rhodamine B and epoxidation of styrene [15,16]. The most important advantage of using Fe₃O₄ as adsorbents or magnetic support of catalysts is that it can be easily separated from reaction system with an external magnetic field. For many applications, high quality Fe₃O₄ nanopowder with different properties is required to satisfy individual demand. For example, for biomedical applications, the Fe₃O₄ nanopowder is required to be biocompatible and should possess superparamagnetic characteristics to prevent agglomeration of the particles. For applications in water treatment, however, it is desirable that Fe₃O₄ nanopowder has ferrimagnetic characteristics with a high Ms and high specific surface area.

In response to the many potential applications for Fe_3O_4 nanopowder, various preparation methods have been developed, such as co-precipitation, microemulsion, hydrothermal method, sonochemical approach, mechanochemical approach, and nonaqueous synthetic method, etc. [17–22]. Most of the previously developed methods involve multiple steps and use multi-reagents, which will lead to the large wastage of energy and material. Among these methods, the nonaqueous synthetic method attracts much attention; and, it has been extensively demonstrated that Fe_3O_4 nanopowder with rather narrow size distribution can be obtained by using this technique [23–25]. However, the use of multi-reagents including organometallic compound of iron, organic solvents and some stabilizers are still required in this method. In addition, in most case, iron pentacarbonyl (Fe(CO)₅), an extremely toxic and unstable chemical, is commonly used as a precursor, which may

^{*} Corresponding author. Tel.: +86 471 43921214; fax: +86 471 4392124. *E-mail address*: asuha42@yahoo.com.cn (S. Asuha).

^{0925-8388/\$ –} see front matter 0 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.jallcom.2010.11.145

Fig. 1. XRD patterns of the samples prepared by the direct thermal decomposition of $[Fe(CON_2H_4)_6](NO_3)_3$ in a closed container at (a) 200 °C, (b) 250 °C, and (c) 300 °C.

limit the usage of this method for the mass production of Fe_3O_4 nanopowder.

In our previous studies, we found that the direct thermal decomposition of $[Fe(CON_2H_4)_6](NO_3)_3$ in an open container can produce maghemite $(\gamma - Fe_2O_3)$ nanopowder [26,27]. We also found that Fe₃O₄ nanopowder with superparamagnetic properties can be prepared by a solvothermal method using the iron urea complex as a precursor [28]. In comparison with organic iron complexes (e.g., Fe(CO)₅, iron acetylacetonate, iron cupferronates) that are currently used as precursors in thermal decomposition process, the $[Fe(CON_2H_4)_6](NO_3)_3$ is a nontoxic, stable inorganic complex, as has been evidenced from its application in agriculture where it is used as a fertilizer [29]; hence, it can safely be used as a iron oxide precursor. In the present work, we show that Fe₃O₄ nanopowder with ferrimagnetic characteristics can be prepared via the direct thermal decomposition of [Fe(CON₂H₄)₆](NO₃)₃ in a closed container. The main advantages of this method are: (i) the preparation procedure involves only one-step, (ii) only one reagent (i.e., $[Fe(CON_2H_4)_6](NO_3)_3$ is used. Accordingly, these advantages are very promising for the large scale production of Fe₃O₄ nanopowder when taking the production cost and the influence of production on environment into consideration.

2. Experimental

2.1. Synthesis

2.0 g of the $[Fe(CON_2H_4)_6](NO_3)_3$, which was synthesized using previously reported method [26], was added to a 45-mL stainless autoclave with a Teflon liner. Then the autoclave was heated in an oven at a predetermined temperature for 2 h, resulting in the formation of a black fine powder.

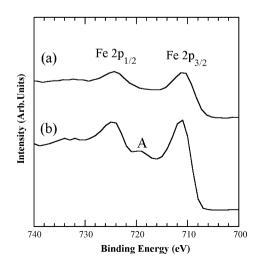
2.2. Characterization

X-ray diffraction patterns (XRD) were recorded on a Philips PW 1830 diffractometer using CuK α radiation. X-ray photoelectron spectroscopy (XPS) spectra were measured using an AXIS-Ultra instrument from Kratos Analytical with a monochromatic Al K α radiation source; in this case, peak positions were calibrated using the C 1s peak position. TEM measurements were carried out using a JEOL JEM-2200FS transmission electron microscope. Magnetic measurements were performed using a Lake Shore 7407 vibrating-sample magnetometer (VSM) at room temperature.

3. Results and discussion

Fig. 1 shows the XRD patterns of the samples prepared by the direct thermal decomposition of $[Fe(CON_2H_4)_6](NO_3)_3$ at different

d-Spacings of the sample prepared by the direct thermal decomposition of $[Fe(CON_2H_4)_6](NO_3)_3$ in a closed container at 250 $^\circ$ C and those of Fe_3O_4 and γ -Fe_2O_3 from JCPDS files.


d (Å)	Fe ₃ O ₄ (Å) ^a	γ -Fe ₂ O ₃ (Å) ^b	hkl
2.9541	2.9670	2.9530	220
2.5226	2.5320	2.5177	311
2.0923	2.0993	2.0866	400
1.7102	1.7146	1.7045	422
1.6121	1.6158	1.6073	511
1.4812	1.4845	1.4458	440

^a JCPDS file No. 19-629.

^b JCPDS file No. 39-1346.

temperatures for 2 h. The diffraction patterns match well with the Joint Committee on Powder Diffraction Standards (JCPDS) file of Fe₃O₄. In iron oxides, both Fe₃O₄ and γ -Fe₂O₃ have a same cubic spinel crystalline structure, and it is very difficult to differentiate them with XRD patterns. But they can be distinguished using *d*-spacing values. The *d*-spacing values of the sample which was obtained at 250 °C together with the JCPDS files of Fe₃O₄ and γ -Fe₂O₃ are listed in Table 1. It can be seen that experimental data match with the *d*-spacing values of Fe₃O₄ better, indicating the formation of Fe₃O₄. For the samples prepared at 200, 250 and 300 °C, the average crystallite sizes of Fe₃O₄, which were calculated from the half-width of diffraction lines by using Scherrer's equation. were estimated to be 37, 42 and 50 nm, respectively, indicating that Fe₃O₄ crystallite size increased with the increase of reaction temperature. Although the crystallite size could be controlled by varying reaction temperature, the controllable range was relatively narrow. One advantage of this method is that the Fe₃O₄ nanopowder with a relatively large particle size can be prepared in a short time as compared with our previously reported method [28].

As reported in literatures [30], XPS has also been proven to be a powerful tool for the discrimination of Fe₃O₄ and γ -Fe₂O₃. Therefore, the XPS spectra of the sample have been measured in order to further confirm the formation of Fe₃O₄. Fig. 2 shows XPS spectrum in the Fe 2p region for the sample prepared by the direct thermal decomposition of [Fe(CON₂H₄)₆](NO₃)₃ at 250 °C for 2 h (spectrum a). For comparison, the spectrum for γ -Fe₂O₃, which is prepared by previously reported method [26], is also shown in the figure (spectrum b). For present sample, the peak positions of Fe 2p_{3/2} and Fe 2p_{1/2} were observed at 710.7 and 724.2 eV, respectively, which agree well with those for the Fe₃O₄ reported in literature [31]. On the other hand, the peak positions of Fe 2p_{3/2} and Fe 2p_{1/2} for γ -

Fig. 2. XPS spectra: (a) for the sample prepared by the direct thermal decomposition of $[Fe(CON_2H_4)_6](NO_3)_3$ in a closed container at 250 °C for 2 h, and (b) for γ -Fe₂O₃.

Download English Version:

https://daneshyari.com/en/article/1617643

Download Persian Version:

https://daneshyari.com/article/1617643

Daneshyari.com