FLSEVIER

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jallcom

Influence of MoO_3 doping on structure and electrical conductivity of defect fluorite-type $Gd_2Zr_2O_7$

Zhan-Guo Liu, Shuai Gao, Jia-Hu Ouyang*, Xiao-Liang Xia

Institute for Advanced Ceramics, Department of Materials Science, Harbin Institute of Technology, No. 92 West Da-Zhi Street, Harbin 150001, China

A R T I C L E I N F O

Article history: Received 8 June 2010 Received in revised form 8 July 2010 Accepted 10 July 2010 Available online 17 July 2010

Keywords: $Gd_2(Zr_{1-x}Mo_x)_2O_{7+2x}$ Electrolyte Impedance spectroscopy Electrical conductivity

1. Introduction

Solid oxide fuel cells (SOFCs) are generally considered as a clean, efficient and silent technology with a variety of potential applications [1]. Typically, SOFCs consist of an ionic conducting electrolyte and mixed ionic and electronic conducting electrodes (cathode and anode). The conventional electrolyte is 8 mol% Y₂O₃-ZrO₂ (YSZ), and the anode is Ni-YSZ cermets and cathode is La_{1-x}Sr_xMnO₃ oxide, respectively [2-4]. However, unwanted chemical reactions generally take place at the cathode/electrolyte interface when SOFCs are operated at high temperatures for a long time. It will generate insulating La₂Zr₂O₇ and SrZrO₃ at the interface, which may have a detrimental effect on SOFCs performance [5,6]. In last several decades, great efforts can be found on improving the electrical conductivity of solid electrolytes [7–9]. It is well known that the electrical conductivity of solid electrolytes is affected by a lot of factors such as microstructure, ionic radius and valence of doping elements, and oxygen vacancy concentration, etc. [10-12]. There is a great deal of interest in the reducing the operating temperature of SOFCs. Complex oxides with the $A_2B_2O_7$ -type structure, where A is a trivalent rare-earth element and B represents a tetravalent transition metal element, show an excellent electrical properties owing to high compositional diversity, structural flexibility and intrinsic concentration of oxygen vacancies [13,14]. van Dijk et al. [15,16] prepared $Gd_xZr_{1-x}O_{2-x/2}$ (0.2 < x < 0.6) ceramics,

ABSTRACT

In this paper, we report the preparation, structure and electrical conductivity of MoO₃-doped zirconates with a nominal chemical formula of $Gd_2(Zr_{1-x}Mo_x)_2O_{7+2x}$ (x = 0, 0, 1, 0.2). X-ray diffraction measurements indicate that $Gd_2Zr_2O_7$ exhibits a defect fluorite-type structure, and $Gd_2(Zr_{1-x}Mo_x)_2O_{7+2x}$ (x = 0.1, 0.2) have a single phase of pyrochlore-type structure. The alternating current (AC) impedance measurements show that the electrical conductivity of $Gd_2(Zr_{1-x}Nb_x)_2O_{7+2x}$ ceramics obeys the Arrhenius equation, and gradually increases with increasing temperature from 673 to 1173 K. The activation energy and pre-exponential factor for electrical conductivity gradually decrease with the increase of MoO₃ content. $Gd_2(Zr_{1-x}Mo_x)_2O_{7+2x}$ ceramics are oxide-ion conductors in the oxygen partial pressure range of 1.0×10^{-4} to 1.0 atm at all test temperature levels. The electrical conductivity of defect fluorite-type $Gd_2Zr_2O_7$ is not improved by MoO₃ doping.

© 2010 Elsevier B.V. All rights reserved.

and found that the stoichiometric Gd₂Zr₂O₇ had a maximum in ionic conductivity and a minimum in activation energy at temperatures between 773 and 1023 K. Gd₂Zr₂O₇ ceramics doped with different cations at A sites were widely investigated as potential solid electrolytes for SOFCs [17-22]. Gd₂Zr₂O₇ doped with 5 and 10 mol% Sr showed a higher electrical conductivity than undoped Gd₂Zr₂O₇ in the temperature range of 773–973 K [17]. A significant increase in electrical conductivity was found by suitable substitution of Sm or Nd at the Gd site in $Gd_2Zr_2O_7$ ceramic [18,19]. However, the electrical conductivity of $(Gd_{1-x}La_x)Zr_2O_7$ $(0 \le x \le 1.0)$ ceramics was almost La-content independent from 773 to 1023 K [5,6]. For $(Gd_{1-x}Yb_x)_2Zr_2O_7$ ($0 \le x \le 1.0$) ceramics, the electrical conductivity gradually decreases with the increase of Yb content at identical temperature levels [20]. Moon and Tuller [21] found that Gd₂(Zr_{0.9}Ti_{0.1})₂O₇ had the highest electrical conductivity in $Gd_2(Zr_{1-x}Ti_x)_2O_7$ ($0 \le x \le 1.0$) ceramics, and the electrical conductivity was comparable to YSZ at identical temperature levels.

To the best of our knowledge, there is no report on structure and electrical conductivity of MoO₃-doped Gd₂Zr₂O₇ in the open literatures. It is interesting to study the influence of the substitution of hexavalent Mo at the Zr site on the structure and electrical conductivity of Gd₂Zr₂O₇ ceramic. In this work, the preparation, structure and electrical conductivity of Gd₂(Zr_{1-x}Mo_x)₂O_{7+2x} (x=0, 0.1, 0.2) ceramics were investigated in detail.

2. Experimental

Zirconate ceramics with a nominal chemical formula of $Gd_2(Zr_{1-x}Mo_x)_2O_{7+2x}$ (x=0, 0.1, 0.2) were prepared by a conventional solid-state reaction method in

^{*} Corresponding author. Tel.: +86 451 86414291; fax: +86 451 86414291. *E-mail address:* ouyangjh@hit.edu.cn (J.-H. Ouyang).

^{0925-8388/\$ -} see front matter © 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.jallcom.2010.07.101

Fig. 1. XRD patterns of $Gd_2(Zr_{1-x}Mo_x)_2O_{7+2x}$ ceramics sintered at 1973 K for 10 h in air: (a) in 2θ range of $10-70^{\circ}$; (b) (3 1 1)_F/(6 2 2)_{Py} peak in 2θ range of 56.5–59.5°.

air using stoichiometric amounts of Gd₂O₃ (Grirem Advanced Materials Co. Ltd., China; purity \geq 99.99%), ZrO₂ (Dongguan SG Ceramics Technology Co. Ltd., China; purity \geq 99.98) and MoO₃ (Shanghai Colloid Chemical Plant, China; purity \geq 99.5%). The powders were mechanically mixed for 24 h at rotating speed of 300 rpm using zirconia ball and absolute ethyl alcohol as milling media. The mixed powders were dried and then pressed into pellets using a uniaxial stress. Subsequently, the pellets were further compacted by an isostatic pressure of 280 MPa for 5 min. The pressed pellets were measured by the Archimedes principle with an immersion medium of deionized water. The phase structure of sintered samples was characterized by an X-ray diffractometer (Rigaku D/Max 2200VPC, Japan) with Cu K α radiation at a scan rate of 4°/min. A step scan procedure (0.02°/2 θ step, time per step 3 s) on the diffraction peaks of (3 1 1)_F/(62 2)_{Py} was recorded to determine the evolution of X-ray spectrum.

The impedance measurements were performed on sintered pellets (~1 mm in thickness, ~8 mm in diameter) in air using platinum electrodes. Platinum paste was applied on both sides of the sintered pellets, and cured at 1223 K for 2 h in air to remove the organic binders. The alternating current (AC) impedance spectra were obtained using an impedance/gain-phase analyzer (SolartronTM SI 1260, UK). Impedance measurements were conducted on heating from 673 to 1173 K in a frequency range from 2 MHz to 200 Hz with an increment interval of 50 K. The impedance spectra were also measured in an oxygen partial pressure $p(O_2)$ range of 1.0 × 10⁻⁴ to 1.0 atm. Software equivalent circuit Zview 3.1c was used to analyze the AC impedance data.

3. Results and discussion

Fig. 1 shows the XRD patterns of $Gd_2(Zr_{1-x}Mo_x)_2O_{7+2x}$ ceramics sintered at 1973 K for 10 h in air. From Fig. 1(a), $Gd_2Zr_2O_7$ ceramic

Relative densities of $Gd_2(Zr_{1-x}Mo_x)_2O_{7+2x}$ ceramics sintered at 1973 K for 10 h in air.

Ceramic materials	Relative density (%)
$\begin{array}{l} Gd_2Zr_2O_7\\ Gd_2(Zr_{0.9}Mo_{0.1})_2O_{7.2}\\ Gd_2(Zr_{0.8}Mo_{0.2})_2O_{7.4} \end{array}$	97.3 96.5 96.0

exhibits a defect fluorite-type structure, and $Gd_2(Zr_{1-x}Mo_x)_2O_{7+2x}$ (*x*=0.1, 0.2) ceramics have a pyrochlore-type structure, which is characterized by the presence of typical superstructure diffraction peaks at the 2θ values of about 14° (111), 28° (311), 37° (331), 45° (511) and 51° (531) using Cu K α radiation [22–24]. No other phases are identified from Fig. 1(a). The XRD patterns of (311)_F/(622)_{Py} peak for $Gd_2(Zr_{1-x}Mo_x)_2O_{7+2x}$ ceramics are shown in Fig. 1(b), which indicates that these peaks gradually shift to the high angle region with the increase of MoO₃ content. The MoO₃-doped $Gd_2Zr_2O_7$ can be simply expressed using the defect equilibrium reaction as:

$$MoO_3 \stackrel{Gd_2Zr_2O_7}{\longrightarrow} Mo_{7r}^{\bullet\bullet} + O_i'' + 2O_0$$
(1)

where $Mo_{Zr}^{\bullet,o}$, O_i'' and $2O_o$ represent a hexavalent Mo cation at a tetravalent Zr cation site, an oxygen anion at the interstitial site and two oxygen anions on regular oxygen anion sites in the crystal structure, respectively.

In the $A_2B_2O_7$ system, the phase structure is mainly governed by the ionic radius ratio of $r(A^{3+})/r(B^{4+})$. The stability of pyrochlore-type structure in zirconates is limited to the range of $1.46 \le r(A^{3+})/r(B^{4+}) \le 1.78$ at an atmospheric pressure [14]. The ionic radius of Gd³⁺ is 0.1053 nm in eightfold coordination, and the ionic radius of Zr⁴⁺ and Mo⁶⁺ is 0.072 and 0.059 nm in the sixfold coordination, respectively [25]. The value of $r(A^{3+})/r(B^{4+})$ is equal to 1.46 for Gd₂Zr₂O₇, and Gd₂Zr₂O₇ shows a defect fluorite-type structure owing to high sintering temperature of 1973 K used in this work, which is higher than the phase transition temperature (1803 K) of $Gd_2Zr_2O_7$ [26]. For $Gd_2(Zr_{1-x}Mo_x)_2O_{7+2x}$ (x=0.1, 0.2) ceramics in this work, the values of $r(A^{3+})/r(B^{4+})$ are clearly larger than 1.46 since the ionic radius of Mo^{6+} is smaller than that of Zr^{4+} , and therefore $Gd_2(Zr_{1-x}Mo_x)_2O_{7+2x}$ (x = 0.1, 0.2) ceramics exhibit a pyrochlore-type structure. Table 1 presents the relative densities of $Gd_2(Zr_{1-x}Mo_x)_2O_{7+2x}$ ceramics sintered at 1973 K for 10 h in air. It shows that $Gd_2(Zr_{1-x}Mo_x)_2O_{7+2x}$ ceramics have a high relative density of 96.0-97.3%.

Fig. 2 shows typical impedance plots of $Gd_2(Zr_{1-x}Mo_x)_2O_{7+2x}$ ceramics at 723 K in air. The contributions due to grain and grainboundary effects are obviously observed at high and low-frequency regions. In the ideal case, the frequency response of electrical conductivity of polycrystalline electrolytes can be modeled by a resistor-capacitor (RC) pair in parallel. However, in the present case, in place of capacitor a constant phase element (CPE) is required to model the experimental data [27], as shown in Fig. 2, respectively. From fitted results, for $Gd_2(Zr_{1-x}Mo_x)_2O_{7+2x}$ (x=0, 0.1, 0.2) ceramics, the capacitance for the high-frequency semicircles at 723 K in air is determined to be 2.08×10^{-10} F cm⁻¹, $2.85 \times 10^{-10} \,\text{F}\,\text{cm}^{-1}$ and $3.17 \times 10^{-10} \,\text{F}\,\text{cm}^{-1}$, respectively, while the low-frequency semicircles show capacitance at 723 K in air is $5.04 \times 10^{-7} \,\mathrm{F \, cm^{-1}}$, $1.02 \times 10^{-7} \,\mathrm{F \, cm^{-1}}$, and $6.91 \times 10^{-8} \,\mathrm{F \, cm^{-1}}$, respectively. These values are typical for the grain and grainboundary contributions in solid electrolyte materials. The electrical resistance value of each composition of $Gd_2(Zr_{1-x}Mo_x)_2O_{7+2x}$ ceramics, R, is determined from the intercept of the corresponding low-frequency semicircle on the Z' axe [27]. The electrical conductivities of $Gd_2(Zr_{1-x}Mo_x)_2O_{7+2x}$ ceramics are calculated from the values of resistance at corresponding temperatures and the geometrical dimensions of the measured samples.

Download English Version:

https://daneshyari.com/en/article/1617922

Download Persian Version:

https://daneshyari.com/article/1617922

Daneshyari.com