

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jallcom

Solid-state phase equilibria in the Co-Pt-Tb ternary system at 1173 K

Z. Fuqiang, G. Zhengfei*, C. Gang, L. Ruifeng, W. Yong

Faculty of Information Materials Science and Engineering, Guilin University of Electronic Technology, Guilin 541004, China

ARTICLE INFO

Article history: Received 26 February 2010 Received in revised form 7 March 2010 Accepted 8 March 2010 Available online 15 March 2010

Keywords:

Transition metal compounds Rare-earth compounds Phase diagram Crystal structure X-ray diffraction

1. Introduction

The Co-Pt, Pt-Tb, Co-Tb binary systems that bounds the Co-Pt-Tb ternary system have been widely investigated. It has been reported that cobalt and platinum form a continuous solid solution in the Co-Pt binary system at 1173K [1]. The Co-Tb binary system phase equilibria had also been well studied [2–4], with the formation of five binary compounds $Co_{17}Tb_2$ ($Zn_{17}Th_2$) structure type), Co₅Tb (CaCu₅ structure type), Co₇Tb₂ (Co₇Er₂) structure type), Co₃Tb (Ni₃Pu structure type) and Co₂Tb (Cu₂Mg structure type) having been discovered. Specific research about the Co₅Tb compound showed it to be present after annealing at 1273K for 100h [5], however, its eutectoid decomposition reaction would take place at around 1083K [6]. Thus, ones proposed it to be a high temperature phase or a metastable phase at low temperature [6,7]. Furthermore, nine binary compounds, Pt₅Tb (Pt₅Sm structure type), Pt₃Tb (AuCu₃ structure type), Pt₂Tb (MgCu₂ structure type), Pt₄Tb₃ (Pd₄Pu₃ structure type), PtTb (BFe structure type), Pt₄Tb₅ (Pu₅Rh₄ structure type), Pt₃Tb₅ (Mn₅Si₃ structure type), PtTb₂ (Co₂Si structure type) and PtTb₃ (CFe₃ structure type) have been reported in the Pt-Tb binary system [3,8–16]. Crystallographic data for these binary compounds of the Co-Tb and Pt-Tb systems are collected in Table 1.

However, the study about the Co-Pt-Tb ternary system itself has been comparatively scarce up to now. We present here a systemat-

* Corresponding author. *E-mail address:* gzfwzi88@163.com (G. Zhengfei).

ABSTRACT

The solid-state phase equilibria in the Co–Pt–Tb ternary system at 1173 K (Tb \leq 70%) were investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) and energy dispersion spectroscopy (EDS) techniques. The 1173 K isothermal section consists of 14 single-phase regions, 25 two-phase regions and 12 three-phase regions. At 1173 K, we have observed that the maximum solubility of Tb in α -(Co, Pt) is below 1.5 at.%Tb, with the maximum solid solubility of Pt in the compounds Co₁₇Tb₂, Co₇Tb₂, Co₃Tb and Co₂Tb being below 1 at.%Pt, 2 at.%Pt, 3.5 at.%Pt and 2 at.%Pt, respectively. Furthermore, the maximum solid solubility of Co in the compounds Pt₅Tb, Pt₄Tb₃, PtTb, Pt₄Tb₅, Pt₃Tb₅, PtTb₂ and PtTb₃ is below 1 at.%Co, whereas in Pt₂Tb it reaches 17 at.%Co. With the introduction of Co, the Pt₄Tb₃ phase gradually decomposes into the two neighboring compounds PtTb and Pt₂Tb, while with the Co content exceeded 9 at.%Co, the Pt₄Tb₃ phase disappears. No new ternary compounds or Co₅Tb were observed in our study. © 2010 Elsevier B.V. All rights reserved.

ically experimental investigation of the isothermal section of this system at 1173 K so as to reveal their phase equilibria relationship.

2. Experimental

All samples were prepared by raw materials (terbium, cobalt, and platinum) with the purity above 99.9%. In order to build the solid-state phase equilibria in the Co-Pt-Tb system at 1173 K, 68 alloy buttons have been prepared by arc melting on a water-cooled copper hearth under argon atmosphere. These buttons were melted and turned at least four times to ensure homogeneity. The mass losses after the melting process were less than 0.5 wt%. After melting, the samples were sealed in quartz tubes pre-evacuated and refilled with purified argon, along with being annealed at 1173 K for 15 days followed by quenching in water. The brittle samples were ground to powders in a carnelian mortar for X-ray diffraction. A few tough samples were first pressed into slices $(7 \text{ mm} \times 3 \text{ mm} \times 1 \text{ mm})$ and sealed in quartz tubes, then annealed under the protection of purified argon at 1173 K for 15 days to ensure homogeneity and eliminate the stress, further with quenching in ice-water for X-ray diffraction. The samples in the Co-rich region were crumbled to particles in a stainless steel mortar, and then ground to powders in a carnelian mortar, which were finally annealed under the protection of purified argon at 1173 K for several hours to eliminate the stress and quenched in ice-water for X-ray diffraction. X-ray diffraction (Cu K α radiation), scanning electron microscopy and energy dispersion spectroscopy techniques were used in the phase analysis investigation. Samples for X-ray diffraction analysis were analyzed on a D8 advance diffractometer with Cu K α radiation.

3. Results and discussion

3.1. Phase analysis

3.1.1. The Pt–Tb binary system

The Pt_4Tb_3 compound (Pd_4Pu_3 type) exists up to 300 °C in the Pt–Tb binary system [12]. As for the binary system, our result also showed that the Pt_4Tb_3 exists at 900 °C (Fig. 1(a)), but with

^{0925-8388/\$ -} see front matter © 2010 Elsevier B.V. All rights reserved. doi:10.1016/j.jallcom.2010.03.082

Table 1
Crystallographic data of the binary compounds of the Co–Tb, Pt–Tb systems,

Compounds	Structure type	Space group	Lattice parameters (nm)			References
			a	b	С	
Co ₁₇ Tb ₂	Th ₂ Zn ₁₇	RĪm	0.8344	-	1.219	[2,3]
Co ₅ Tb	CaCu ₅	P6/mmm	0.49608	-	0.3981	[2,3]
CO_7Tb_2	Co ₇ Er ₂	RĪm	0.5002	-	3.6211	[2,3]
Co ₃ Tb	Ni ₃ Pu	R3m	0.502	-	2.445	[2,4]
Co ₂ Tb	Cu ₂ Mg	Fd3m	0.7209	-	-	[2,3]
Pt₅Tb	Pt ₅ Sm	_	0.5248	0.9092	2.644	[8,9]
Pt₃Tb	AuCu ₃	Pm3m	0.40839	-	-	[3,10]
Pt ₂ Tb	MgCu ₂	Fd3m	0.7618	-	-	[3,11]
Pt ₄ Tb ₃	Pd ₄ Pu ₃	RĴ	1.3163	-	0.5689	[3,12]
PtTb	BFe	Pnma	0.7013	0.449	0.5564	[3,13]
Pt ₄ Tb ₅	Pu ₅ Rh ₄	Pnma	0.7495	1.4602	0.7565	[3,14]
Pt ₃ Tb ₅	Mn ₅ Si ₃	P6 ₃ /mcm	0.8415	-	0.6230	[3,15]
Pt Tb ₂	Co ₂ Si	Pnma	0.7147	0.4772	0.8763	[3,15]
Pt Tb ₃	CFe ₃	Pnma	0.7077	0.9541	0.6444	[3,16]

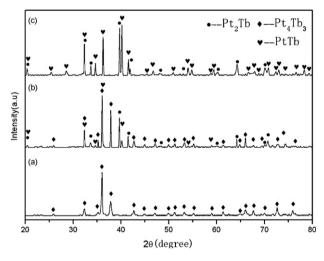


Fig. 1. Observed XRD patterns of the Pt_4Tb_3 (a), $Co_4Pt_{53}Tb_{43}$ (b) and $Co_9Pt_{48}Tb_{43}$ (c) compounds annealed at 1173 K for 15 days.

the introduction of Co, it was found that the compound decomposed gradually into PtTb (BFe type) and Pt₂Tb (MgCu₂ type) (Fig. 1(b)). Further evidence is given by the XRD pattern and SEM image of the Co₉Pt₄₈Tb₄₃ sample, which is presented in Fig. 1(c) and Fig. 2, respectively. From XRD data, it was found that two phases PtTb and Pt₂Tb are present in Co₉Pt₄₈Tb₄₃, while from the SEM image, together with EDS analysis, it can be identified that it is a three-phase sample, which includes Co, Pt₂Tb and PtTb (although Co can not be detected in the XRD pattern). This suggested that Co addition destabilizes the Pt₄Tb₃ compound, leading to Pt₄Tb₃ complete decomposition in Co₉Pt₄₈Tb₄₃. The similar decomposition cases were also observed in Pr₃Pt₄ [17] and Nd₃Pt₄ [18].

Previous research has shown that the Pt_3Tb phase in the Pt-Tb binary system possesses the C15-type structure under the "ascrushed", arc-melted condition [10], but other experiments also revealed that if it was annealed at 1173 K for two hours, this alloy would adopt the L_{12} -type (AuCu₃ type) structure [19]. We prepared some samples between the Pt_3Tb and Pt_2Tb phase in the Pt-Tb binary system. From XRD patterns showed in Fig. 3, one can clearly visualize that the sample $Pt_{83}Tb_{27}$ consists of both Pt_3Tb with AuCu₃-type structure and Pt_2Tb with MgCu₂-type structure. This means that the phase Pt_3Tb with AuCu₃ structure type exists under our presently experimental condition. This conclusion is in good agreement with that reported in Ref. [2].

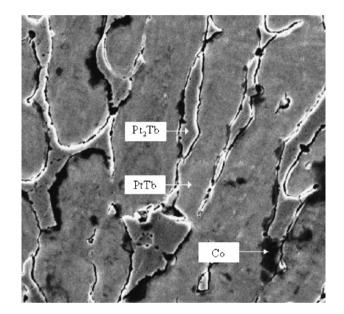


Fig. 2. SEM image of $Co_9Pt_{48}Tb_{43}$ sample annealed at 1173 K for 15 days.

3.1.2. The Co-Tb binary system

The Co₅Tb compound (CaCu₅-type structure) was proved to be a high temperature phase with eutectoid decomposition temperature at about 1083 K in the series of Co₅R binary system [20], and it was also reported that the Co₅Tb compound would not

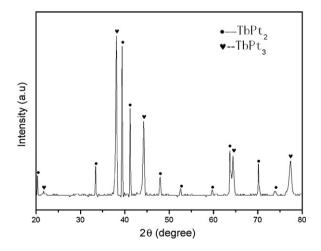


Fig. 3. Observed XRD pattern of the Pt₈₃Tb₂₇ sample annealed at 1173 K for 15 days.

Download English Version:

https://daneshyari.com/en/article/1618716

Download Persian Version:

https://daneshyari.com/article/1618716

Daneshyari.com