ELSEVIER

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jallcom

Transport properties of Ag_{0.8}Pb₁₈SbTe₂₀ prepared by high pressure and high temperature

Taichao Su^{a,*}, Shangsheng Li^a, Hongan Ma^b, Xiaolei Li^a, Le Deng^b, Yan Yan^b, Wei Guo^b, Xiaopeng Jia^{a,b,*}

ARTICLE INFO

Article history:
Received 12 November 2009
Received in revised form 9 March 2010
Accepted 9 March 2010
Available online 15 March 2010

Keywords: HPHT Transport properties Ag_{0.8}Pb₁₈SbTe₂₀

ABSTRACT

In this paper, N-type thermoelectric materials $Ag_{0.8}Pb_{18}SbTe_{20}$ with enhanced power factor were prepared by high pressure and high temperature (HPHT) method. The synthetic pressure-dependent transport properties including electrical resistivity, Seebeck coefficient and power factor were studied at room temperature. The maximum power factor of $15.4\,\mu\mathrm{W}\,\mathrm{cm}^{-1}\,\mathrm{K}^{-2}$ was obtained at the synthetic pressure of $4.0\,\mathrm{GPa}$, which is much higher than that of the same sample prepared by other methods.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Thermoelectric materials have become increasingly important due to the applications in power generation and electric cooling [1–5]. The efficiency of a thermoelectric (TE) material is usually characterized by the figure of merit ZT, defined as $ZT = T\sigma S^2/\kappa$, where T is the absolute temperature, σ is the electrical conductivity, S is the Seebeck coefficient, and κ is the thermal conductivity. The electrical properties are determined by the power factor, defined as $S^2\sigma$ or S^2/ρ , where ρ is the electrical resistivity. A good thermoelectric material must have a large power factor and a low thermal conductivity.

In 2004, Hus et al. reported that the quaternary thermoelectric material $Ag_{1-x}Pb_{18}SbTe_{20}$ could achieve a ZT value of about 2.2 at 800 K [1]. The high figure of merit was originated from nanocrystals of AgSb-rich phase embedded in a PbTe-rich matrix [1]. After that, many other pursuers were inspired by the progress and started to study the $AgPb_{18}SbTe_{20}$ system by many methods [6–13]. However, the high figure of merit of Hus is difficult to replicate [8–11]. The main reason is that the power factor is too low as a result of the high electrical resistivity the sample exhibits [8–11]. Recently, Li and coworkers studied $AgPb_{18}SbTe_{20}$ system by combining mechanical alloying (MA) and spark plasma sintering (SPS). They found that large power factor (18–20 μ W cm⁻¹ K⁻²) and high figure of merit

(1.2-1.5) could only be obtained when the composition was rich in Pb [12,13].

Comparing to other preparation methods for thermoelectric materials, the method of HPHT has many advantages, such as restraining the disorder, phase separation and other complicating factors during the preparation for materials [14]. In our previous studies, PbTe and AgSbTe₂ have been successfully prepared by HPHT [14,15]. The resistivity was decreased and the power factor for these samples was improved effectively under the effect of high pressure. AgPb₁₈SbTe₂₀ has the same crystal structure of NaCl as PbTe and AgSbTe₂, which could also be regarded as the alloy of PbTe and AgSbTe₂. High pressure may overcome the disadvantage of low power factor for AgPb₁₈SbTe₂₀ synthesized at normal pressure.

In the present study, thermoelectric material $Ag_{0.8}Pb_{18}SbTe_{20}$ was synthesized by HPHT. The transport properties including Seebeck coefficient and electrical resistivity are investigated at room temperature. Our results show that HPHT is an effective method to synthesize $AgPb_{18}SbTe_{20}$ with enhanced power factor.

2. Experimental

The Ag_{0.8}Pb₁₈SbTe₂₀ samples were prepared with tellurium (99.99% in purity), plumbum (99.9%), antimony (99.99%) and silver (99.9%) powders as sources, which were weighed according to the stoichiometric ratio. After being uniformly mixed in an agate mortar, the mixtures were pressed into a disk with diameter of 10 mm and height of 4 mm. The pole-shaped samples were assembled for HPHT synthesis. The Ag_{0.8}Pb₁₈SbTe₂₀ compounds were prepared in a cubic anvil high-pressure apparatus (SPD 6× 1200) with a sample chamber of 23 mm on an edge at 1200 K and 2.0–5.0 GPa. The temperature and pressure were kept for 20 min. After that, the

^a Institute of Materials Science and Engineering, Henan Polytechnic University, No. 2001, Century Avenue, Jiaozuo 454000, China

^b National Lab of Superhard Materials, Jinlin University, Changchun 130012, China

^{*} Corresponding authors.

E-mail addresses: taichao80@hotmail.com (T. Su), jiaxp@jlu.edu.cn (X. Jia).

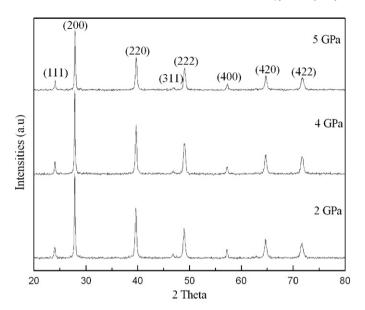


Fig. 1. XRD patterns of Ag_{0.8}Pb₁₈SbTe₂₀ prepared by HPHT.

electrical power for heating was cut off and the pressure was released. The pressure was estimated by the oil press load, which was calibrated by the pressure induced phase transitions of bismuth, thallium and barium metals. The temperature was estimated by the relationship of input heater power and temperature, which was measured by the platinum-rhodium thermocouples.

The collected samples were cut and polished on the surface for thermoelectric measurements which were carried out at room temperature. The density was measured by the Archimedes method. X-ray diffraction (XRD) measurements with Cu K α radiation were performed on an X-ray diffractometer (D/MAX-RA). The fracture surface morphology was characterized by a JXA-8200 scanning electron microscope SEM. The electrical conductivity was measured by typical DC four-probe configuration. The Seebeck coefficient S was determined from thermoelectromotive force E_0 given by the temperature difference within 3–5 K between the two ends of the sample with a home-made instrument. The electromotive force was monitored by computer using the VI-Logger program provided by NI-company.

3. Results and discussion

The XRD patterns of Ag_{0.8}Pb₁₈SbTe₂₀ at different synthetic pressures are shown in Fig. 1. The patterns indicate that all compounds crystallize in the NaCl-type structure without noticeable secondary phase. The lattice constant of Ag_{0.8}Pb₁₈SbTe₂₀ evaluated from the X-ray diffraction pattern is shown in Table 1. The lattice constants are all about 0.646 nm, which is similar to the result of Kosuga et al. [9]. These results confirm that single-phase Ag_{0.8}Pb₁₈SbTe₂₀ compounds with PbTe-based structure have been synthesized by HPHT in a relatively short period of time.

As seen from Table 1, the density increases with an increase of synthesized pressure which may be helpful to decrease the resistivity for $Ag_{0.8}Pb_{18}SbTe_{20}$. Fig. 2 shows the SEM photograph of the fractured surface for the $Ag_{0.8}Pb_{18}SbTe_{20}$ sample synthesized at $4.0\,GPa$. (The SEM patterns of $Ag_{0.8}Pb_{18}SbTe_{20}$ prepared under different synthetic pressures are nearly the same.) From the photograph, we can see that the sample is considerably dense with micrometer scale grains.

The dependence of Seebeck coefficient of Ag_{0.8}Pb₁₈SbTe₂₀ samples prepared by HPHT on synthetic pressure is presented in Fig. 3.

 $\label{eq:table 1} \textbf{Lattice constant and density of } Ag_{0.8}Pb_{18}SbTe_{20} \text{ prepared by HPHT.}$

Synthetic pressure (GPa)	Lattice constant (rim)	Density (g/cm³)
2	0.6462	8.055
4	0.6456	8.108
5	0.6462	8.134

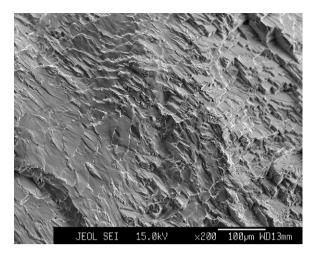



Fig. 2. SEM image of section plane inner of Ag_{0.8}Pb₁₈SbTe₂₀.

The Seebeck coefficients of all the samples are negative, which indicate that the majority of charge carriers are electrons (n-type). The Seebeck coefficient in absolute value for $Ag_{0.8}Pb_{18}SbTe_{20}$ decreases with an increase of synthetic pressure from $-235.9\,\mu\text{V}\,\text{K}^{-1}$ at $2.0\,\text{GPa}$ to $-35.3\,\mu\text{V}\,\text{K}^{-1}$ at $5.0\,\text{GPa}$. The pressure-dependent Seebeck coefficient is similar to the results of PbTe we reported early [14].

The electrical resistivity of $Ag_{0.8}Pb_{18}SbTe_{20}$ as a function of synthetic pressure from 2.0 to 5.0 GPa is shown in Fig. 4. The electrical resistivity decreases with an increase of synthetic pressure, which is similar to the results of in situ measurement for PbTe-based samples under high pressure [14]. The electrical resistivity of the samples prepared by HPHT is lower than that of the samples prepared at normal pressure reported by other pursuers [8–10]. It may be helpful to enhance its thermoelectric properties, which has been testified by the following experimental results (see Fig. 5).

The power factor for $Ag_{0.8}Pb_{18}SbTe_{20}$ calculated by Seebeck coefficient and electrical resistivity is shown in Fig. 5. With the increasing synthetic pressure, the power factor increases when the pressure is lower than 4.0 GPa and then decreases. The maximum power factor for $Ag_{0.8}Pb_{18}SbTe_{20}$ synthesized at 4.0 GPa reaches to $15.4\,\mu\text{W}\,\text{cm}^{-1}\,\text{K}^{-2}$.

Fig. 3. Relationship between Seebeck coefficient and synthetic pressure for $Ag_{0.8}Pb_{18}SbTe_{20}$ measured at room temperature.

Download English Version:

https://daneshyari.com/en/article/1618770

Download Persian Version:

https://daneshyari.com/article/1618770

<u>Daneshyari.com</u>