ELSEVIER

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jallcom

Bonding and hardness of LnMgAl₁₁O₁₉(Ln = La; Pr; Nd; Sm; Eu; Gd)

Zhiping Li, Faming Gao*

Key Laboratory of Apllied Chemistry, Yanshan University, Qinhuangdao 066004, China

ARTICLE INFO

Article history: Received 12 May 2010 Received in revised form 31 August 2010 Accepted 1 September 2010 Available online 9 September 2010

Keywords: Bond Hardness LnMgAl₁₁O₁₉

ABSTRACT

The chemical bond parameters of $LnMgAl_{11}O_{19}$ (Ln=La, Pr, Nd, Sm, Eu, Gd) were calculated using the chemical bond dielectric theory of complex structural crystals. The hardness of $LnMgAl_{11}O_{19}$ was predicted. The results indicated that the origin of the high hardness of $LnMgAl_{11}O_{19}$ results mainly from AlO units.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

LaMgAl₁₁O₁₉ has a slightly distorted magnetoplumbite (PbFe₁₂O₁₉) structure, belonging to the hexagonal space group P6₃/mmc [1]. La³⁺ can be substituted with a lanthanide ion Ln³⁺ (where Ln = Pr, Nd, Sm, Eu, Gd). Lanthanum-magnesium hexaaluminate LaMgAl₁₁O₁₉ is a remarkable good laser host for Nd³⁺ ions (LNA). LnMgAl₁₁O₁₉ can also be used as luminescence materials. saturable absorber Q-switches [2]. Oxides with magnetoplumbite structure of the general composition, LnMAl₁₁O₁₉ (Ln=La to Gd), have high melting point, high thermal expansion, and low thermal conductivity which make them suitable for applications as high-temperature thermal barrier coatings [3]. The first growth of LaMgAl₁₁O₁₉ crystal by using verneuil method (flame fusion method) and floating zone method was reported by Saber and Lejus [1]. For the various applications, LnMgAl₁₁O₁₉ crystals should also possess the excellent mechanical properties. The hardness of LnMgAl₁₁O₁₉ crystals are thus measured [1]. In this paper, we will employ the dielectric theory of complex structure crystals to calculate the chemical bond parameters of LnMgAl₁₁O₁₉, and apply the obtained chemical bond parameters to analyzed their hardness.

2. Theoretical method

A chemical bond theory of complex structure crystals is proposed by Zhang [4,5]. Its crucial step is decomposing the complex

crystal into pseudobinary crystals each containing only one type of chemical bond. For the multibond crystal $A_a B_b \dots$, the subformula for any kind of chemical bond A—B can be expressed as:

$$\left[\frac{N(B-A)a}{N_{CA}}\right]A\left[\frac{N(A-B)b}{N_{CB}}\right]B\tag{1}$$

where A, B, . . . represent different elements or different sites of the same element in the crystal formula, and a,b,\ldots represent numbers of the corresponding element, N(B-A) represents the number of B ions in the coordination group of A ion, and N_{CA} represents the nearest coordination number of A ion. These binary crystals are related to each other, and every binary crystal includes only one type of chemical bond. However, the properties of these psuedo-binary crystals are different from those of real binary crystals, although their chemical bond parameters can be calculated in a similar way. According to Eq. (1), each type of bond has its corresponding subformula, and the sum of all subformula equals the crystal formula, which is called the bond-valence equation.

On the analogy of the work of Phillips [6], the average energy gap E_g^{μ} for every μ bond in the psuedobinary crystals can be separated into homopolar E_h^{μ} and heteropolar C^{μ} parts. The homopolar gap E_h^{μ} can be interpreted as produced by the symmetric part of the total potential, while the ionic or charge-transfer gap C^{μ} results from the effect of the antisymmetric part. The average valence-conduction band gap is give by

$$(E_g^{\mu})^2 = (E_b^{\mu})^2 + (C^{\mu})^2$$
 (2)

The ionicity and covalency of any type of chemical bond is defined as follows

$$f_i^{\mu} = (C^{\mu})^2 / (E_g^{\mu})^2 \tag{3}$$

^{*} Corresponding author. Key Laboratory of Apllied Chemistry, Yanshan University, Qinhuangdao 066004, PR China. Tel.: +86 3358061569; fax: +86 3358061569. E-mail address: gfm0827@sina.com (F. Gao).

$$f_c^{\mu} = (E_b^{\mu})^2 / (E_g^{\mu})^2 \tag{4}$$

and

$$E_h^{\mu} = 39.74/(d^{\mu})^{2.48}(eV) \tag{5}$$

where d^{μ} is the bond length. For any binary crystal, i.e. AB_n type compounds, the heteropolar C^{μ} part is defined as

$$(6)C^{\mu} = 14.4b^{\mu}[(Z_{A}^{\mu})^{*} + \Delta Z_{A}^{\mu} - n(Z_{B}^{\mu})^{*}]e^{-k_{s}^{\mu}r_{0}^{\mu}}/r_{0}^{\mu}(eV)$$

 $r_0^{\mu} = d^{\mu}/2$

$$k_{\rm s}^{\mu} = \left(4k_{\rm F}^{\mu}/\pi a_{\rm B}\right)^{1/2} = 1.551(k_{\rm F}^{\mu})^{1/2}$$
 (7)

$$(k_{\rm F}^{\mu})^3 = 3\pi^2 N_{\rm e}^{\mu} \tag{8}$$

$$N_{\rm e}^{\mu} = (n_{\rm e}^{\mu})^* / v_{\rm b}^{\mu} \tag{9}$$

$$(n_{\rm e}^{\mu})^* = [(Z_{\rm A}^{\mu})^*/N_{\rm CA}^{\mu} + (Z_{\rm R}^{\mu})^*/N_{\rm CB}^{\mu}] \tag{10}$$

$$v_{\rm b}^{\mu} = (d^{\mu})^3 / \sum_{\nu} [(d^{\nu})^3 N_{\rm b}^{\nu}] \tag{11}$$

where $v_b{}^\mu$ is the bond volume, $(n_e{}^\mu)^*$ is the number of effective valence electrons per μ bond, $N_e{}^\mu$ is the number of valence electrons of μ bond per cubic centimeter. $k_F{}^\mu$ and $k_S{}^\mu$ are Fermi wave number and Thomas-Fermi screening wave number of valence electron in binary crystal composed of only one type of bond μ , respectively. a_B is the Bohr radius and n is the ratio of element B to element A in the subformula. $(Z_A{}^\mu)^*$ and $(Z_B{}^\mu)^*$ are the number of effective valence electrons of the A and B ions, respectively, and $(Z_A{}^\mu)^* = Q_{AB}^\mu \cdot N_{CA}^\mu, (Z_B{}^\mu)^* = [(Q_{AB}^\mu \cdot N_{CB}^\mu)/(8 - Z_B^\mu)] \cdot Z_B^\mu, Q_{AB}^\mu$ is Pauling bond valence of A—B bonds, $Z_B{}^\mu$ is the number of valence electrons of the B atoms. $\Delta Z_A{}^\mu$ is correction factor from d electron effects such as the crystal field stable energy and Janh-Teller effect, etc [7,8]. b^μ is proportional to the square of the average coordination number $N_c{}^\mu$

$$b^{\mu} = \beta (N_c^{\mu})^2 \tag{12}$$

$$N_c^{\mu} = N_{CA}^{\mu}/(1+n) + nN_{CB}^{\mu}/(1+n) \tag{13}$$

The value of β can be deduced from the Kramers-Kronig relation of dielectric function at the long wave limit, which is written as

$$\chi^{\mu} = \left[(4\pi N_{\rho}^{\mu} e^{2}/m) D^{\mu} / (E_{\sigma}^{\mu})^{2} \right] (1 - E_{\sigma}^{\mu} / 4E_{F}^{\mu} + (E_{\sigma}^{\mu})^{2} / 48(E_{F}^{\mu})^{2}) \quad (14)$$

$$\varepsilon(\infty) = 1 + \chi = 1 + \sum_{\mu} F^{\mu} \chi^{\mu} \tag{15}$$

where χ is the macroscopic linear susceptibility, χ^{μ} is the total macroscopic susceptibility of a binary crystal composed of only one type of bond μ , E_F^{μ} is Fermi energy, F^{μ} is the fraction of the

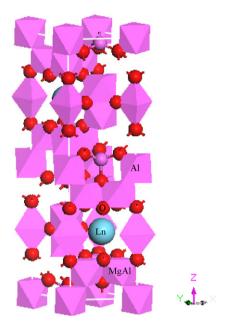


Fig. 1. Crystal structure of LnMgAl₁₁O₁₉.

binary crystal composing the actual complex crystal. D^μ is periodic dependent constants.

3. Results and discussions

LnMgAl $_{11}$ O $_{19}$ have a structural type close to the magneto-plumbite structure, PbFe $_{12}$ O $_{19}$, in which Al $^{3+}$ is substitutes for Fe $^{3+}$ in the network, Ln $^{3+}$ takes the place of Pb $^{2+}$, and Mg $^{2+}$ takes the place of one Fe $^{3+}$. Al(3) and Mg inhabit the same site 4f $_1$. The coordination number of Ln is 12, Al(1), Al(4), and Al(5) are all 6, Al(2) is 5, Al(3) and Mg is 4, O(1), O(2), and O(4) are 4, O(3) is 5. The crystal structure is shown in Fig. 1. According to Eq. (1), the bond-valence equation of LnMgAl $_{11}$ O $_{19}$ is expressed as:

$$\begin{split} &\text{LnMgAl}_{11}\text{O}_{19} = \text{LnAl}(1)\text{Al}(2)\text{MgAl}(3)\text{Al}(4)_{6}\text{Al}(5)_{2}\text{O}(1)_{2}\text{O}(2)_{2} \\ &\text{O}(3)_{3}\text{O}(4)_{6}\text{O}(5)_{6} = 1/2\text{LnO}(3)_{12/5} + 1/2\text{LnO}(5)_{3} + \text{Al}(1)\text{O}(4)_{3/2} \\ &+ 2/5\text{Al}(2)\text{O}(1)_{5/4} + 3/5\text{Al}(2)\text{O}(3) + 1/2[\text{Al}(3)_{1/2}\text{Mg}_{1/2}]\text{O}(2) \\ &+ 3/2[\text{Al}(3)_{1/2}\text{Mg}_{1/2}]\text{O}(4) + \text{Al}(4)\text{O}(1)_{3/2} + \text{Al}(4)\text{O}(2)_{3/2} \\ &+ 2\text{Al}(4)\text{O}(4)_{3/2} + 2\text{Al}(4)\text{O}(5)_{3/2} + \text{Al}(5)\text{O}(3)_{6/5} + \text{Al}(5)\text{O}(5)_{3/2} \quad (16) \end{split}$$

The Pauling bond valences of the bonds in LnMgAl₁₁O₁₉ are shown in Fig. 2. Using the Pauling bond valences, $(Z_A{}^\mu)^*$ and $(Z_B{}^\mu)^*$ can be determined.

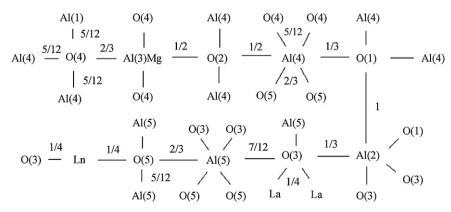


Fig. 2. Coordination and Pauling bond valences in LnMgAl₁₁O₁₉.

Download English Version:

https://daneshyari.com/en/article/1619299

Download Persian Version:

https://daneshyari.com/article/1619299

<u>Daneshyari.com</u>