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a b s t r a c t

The thermodynamic and rheological properties of the Pd40Ni40P20 bulk metallic glass are explored by
means of an indentation creep technique around the glass transition. We have developed a dedicated
instrumented indentation apparatus allowing to assess the mechanical properties at elevated tempera-
tures. The analysis of results is made possible by using the viscoelastic solutions of contact mechanics.
We also analyse the thermodynamics of creep around glass transition to estimate the activation free
energy changes from the activation free enthalpy changes via the shear modulus – temperature data. The
shear viscosity values extracted using this technique allow for the derivation of activation energies (free
enthalpy 210 kJ/mol, enthalpy 456 kJ/mol, entropy 410 J/mol/K) for the flow process. All these properties
were found to closely match with those obtained using conventional techniques for viscosity measure-
ments. Compared to the latter, the indentation creep technique requires small volumes and samples are
easy to prepare. It is therefore expected that such a technique might be employed for the study of glass
transition in metallic glasses.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In glassy materials (silicates, amorphous alloys, glassy poly-
mers..), the knowledge of viscosity is of paramount importance.
Interest is mostly twofold. Firstly, the temperature dependence
of viscosity along with the effects of the stress or the strain rate
(Newtonian or non Newtonian behaviour) or of the environnement
(oxidation e.g.), in the supercooled liquid range (SCLR) below the
crystallisation temperature, allows for the determination of a pro-
cessing window. Inside this window, processing is made easier for
forming these materials, otherwise brittle at lower temperatures,
into simple or more complex geometries. Secondly, it gives some
powerful insight into the physical nature of glasses, including their
structure (short-to-medium range order, packing...) and the ther-
modynamics of flow (activation energies and volumes).

Bulk metallic glasses (BMG) are relatively recently discovered
materials exhibiting extraordinary mechanical properties includ-
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ing strength, yield strain, resilience, hardness or fracture toughness
[1–3]. They are unfortunately usually brittle at room temperature or
quasi-brittle in unconstrained conditions such as tension or com-
pression. Therefore, conventional machining or forming at room
temperature are either too costly or precluded. As for other glassy
materials, forming in the SCLR is possible, even if the oxidation and
crystallisation issues are to be handled with more caution than for
silicate glasses or glassy polymers for instance, and processes have
been recently proposed [4]. Applications of BMG to MEMS (Micro
Electro Mechanical Systems) devices are currently a promising way
[5] and some storage/data systems have already been reported [6].

In all these applications, viscosity measurements are required
as the main processing parameters. As for the physical insight one
can get from viscosity, it should be put into parallel with that from
elasticity measurements [7,8].

Compared to other measurement techniques, indentation creep
allows to characterize small volumes of materials in a non destruc-
tive way. In this paper, we show that the use of indentation creep
experiments, along with the knowledge of the temperature depen-
dence of elastic moduli, provides a rapid, robust and relevant tool
for exploring the thermodynamics of the glass transition in BMG as
well as the steady state shear viscosity.
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2. Theoretical background to creep and indentation creep

In this section, we provide the necessary theoretical background
to creep and indentation creep to allow for the correct interpre-
tation of the experimental results presented in the subsequent
sections.

2.1. Thermodynamic approach to creep

In this paragraph, we present two methods to describe the creep
phenomenon based on a thermodynamic approach.

The first method is based on the concept of hierarchically
correlated motion [9] and considers that the faster molecular move-
ments occur before, and trigger, the slower ones. Let � be the
characteristic relaxation time of the simplest elementary motions
involved in the deformation process, an Arrhenius-type equation
for its thermal behaviour writes:

� = �0 exp
(
�Ga
RT

)
(1)

where�Ga is the free activation enthalpy associated with the flow
process, T is the temperature, R the gas constant and �0 a multiplica-
tive constant. Then the characteristic time for molecular mobility in
the disordered condensed matter �mol (corresponding to the mean
duration of a structural unit jump over a distance equal to its dimen-
sion – experimentally available) is given by (see Refs. [9,10] for
details):

�mol = A�
1
b (2)

where A is a constant and b is the so-called correlation factor which
can be regarded as a structural parameter characterising the cor-
relation between the different atomic or molecular movements
occuring in the glass. When b = 0 any movement of a structural unit
requires the motion of all the other units (maximum order, perfect
correlation), while when b = 1 all the movements are independent
on each other (the maximum disorder corresponding to a Maxwell
model for relaxation, or to a single characteristic time of the classi-
cal Debye relaxation process). Differentiation of Eq. (2) with respect
to temperature, recalling that the directly available thermodynam-
ical parameter is the activation enthalpy�Ha = ∂ln�mol/(∂/RT), one
obtains:

�Ga = b�Ha + T ∂�Ga
∂T

∣∣∣∣
�

−
[
T�Ga
b

+ RT2 log �0

]
∂b

∂T

∣∣∣∣
�

(3)

where � |� � denotes partial differentiation keeping the stress �
as constant.

In temperature ranges where�Ga and b change little with tem-
perature, which is the case, for instance, above the transition range,
the former equation reduces to:

�Ga = b�Ha (4)

This equation, shows that in the common case where b = 0.5, the
apparent energy for the relaxation process is about twice the value
of the relevant free enthalpy energy.

The second method is based on the classical theory of thermally
activated flow phenomena, which considers the existence of two
independent contributions acting together to overcome the energy
barrier, �G0, associated with the flow process. One of this contri-
bution, �Ga, has a purely thermal origin and is derived from the
thermally activated atomic, or molecular, movements; the other,
�Wa, is due to the applied stress so that:

�G0 =�Ga +�Wa (5)

Schoeck [11] considered that the height of the barrier, �G0, to
be overwhelmingly of elastic origin. �G0 is therefore taken to be

proportional to the shear modulus� and depends only on temper-
ature T. A straightforward relationship between the temperature
derivates of�G0 and � leads to:

∂�G0

∂T
= �G0

�

∂�

∂T

∣∣∣∣
�,s

(6)

where s denotes the structure of the glass.
Others assumptions that can be found in [12], allow for a formal

equivalence with the first method and Eq. (4) giving the value of
the correlation factor, b, as

b =
(

1 − T

�

∂�

∂T

)−1

(7)

Let us recall that Eq. (4) is valid in the ranges where b is constant,
that is in the glassy state and in the super cooled liquid range, and
not at the glass transition,

2.2. Indentation-creep

In this paragraph, the key equations modelling the indentation
test are presented.

Sneddon [13] established the relationship between the applied
load Pe and the penetration depth h for a rigid indenter, a linear
isotropic homogeneous material of shear modulus� and Poisson’s
ratio � and a frictionless contact.

Pe(t) = �

1 − � × F × h(t)n (8)

where F and n are constant values related to the indenter geometry
and t is the time.

The problem of linear viscoelastic contact was later addressed
by Lee and Radok [14] then Hunter [15], using the method of func-
tional equations, by substituting the elastic parameters � and � in
Eq. (8) by their viscoelastic time-dependent counterparts � and G.
However as pointed out by the same authors, this procedure is rel-
evant when the boundary conditions, which are time-dependent,
allow for a monotonic increase of the contact area [16]. Ting [17]
proposed a solution for different indenter geometries and differ-
ent contact area histories. This challenging to use method can be
written easily for a monotonic increase of the contact area:

P(t) = 1 − �
�

∫ t

0

 (t − s)∂Pe(s)
∂s

ds (9)

where P is the applied load, Pe is the elastic solution of Eq. (8), and
 is a function defined by:

 ∗ = G∗

1 − �∗ (10)

where f* denotes the Laplace–Carson transform of f.
Using Eq. (8) and (9), we get:

P(t) = F
∫ t

0

 (t − s)∂h
n(s)
∂s

ds (11)

This latter expression being equivalent to

P∗ = F ∗(hn)∗ (12)

Let the function 	 defined by  *	* = 1; we get:

(hn)∗ = P∗

F
	∗ (13)

which is equivalent to:

hn(t) = 1
F

∫ t

0

	(t − s)∂P(s)
∂s

ds (14)
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