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The results of differential scanning calorimetry (DSC) under non-isothermal conditions of the chalco-
genide Iny(Sep75Tep25)100-x (Where 0 <x <10at.%) glasses are reported and discussed. The dependence
of the characteristic temperatures “glass transition temperature (Tg), the crystallization onset tempera-
ture (T.) and the crystallization peak temperature (T,) on the heating rate () utilized in the determination

of the activation energy for the glass transition (Eg), the activation energy for crystallization (E.) and the
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Avrami’s exponent (n). The composition dependence of the Tg, Eg, and E. were discussed in terms of the
chemical bond approach, the average heats of atomization (Hs) and the cohesive energy (CE). The diffrac-
togram of the transformed material shows the presence of some crystallites of Se-Te and In-Se in the
residual amorphous matrix.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Chalcogenide semiconducting glasses have particular interest
due to their wide range of applications as solid state devices both
in scientific and technological fields. Se-In and Se-Te binary alloys
have got several advantages over pure and amorphous Se [1,2]. The
binary In-Se glassy alloys have drawn great attention because of
their potential use in solar cells [3,4].

Amorphous Se-Te alloys have greater hardness, higher crystal-
lization temperature, higher photosensitivity and smaller ageing
effects than pure Se [1]. As these glasses have poor thermo-
mechanical properties, in order to enlarge their domain of
applications, it is necessary to increase their softening temperature
and mechanical strength. The addition of a third element (In) which
has a large electro-negativity difference with Se and Te, expands
the glass forming area and also creates compositional and con-
figurational disorder in the system, and also is found to modify
the structure and thus the electrical and thermal properties of the
Se-Te system [5-10].

There are number of papers [11-16] found in the literature deal
the effect of addition of In into Se-Te glasses on the physical prop-
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erties such as electrical-, photoelectrical-properties and thermal
analysis. The thermal analysis of these alloys is important from an
application point of view. The present work study in detail the effect
of the additions of In content at the expense of Se and Te content on
the glass transition, crystallization kinetics and the Avrami’s expo-
nent for different compositions of Iny(Se75Tezs)100-x (X=0, 2, 4, 6,
8 and 10 at.%) chalcogenide glasses.

2. Theoretical background

The theoretical bases for interpreting DTA or DSC results is
provided by the formula theory of transformation kinetics as the
volume fraction (x) crystallized in time (t) by using the Johnson,
Mehl and Avrami’s equation [17]

x=1—exp[-(kt)"] (1)

where k is defined as the effective (overall) reaction rate, which is
usually assumed to have an Arrhenian temperature dependence.

k = kg exp (;—ITE) (2)

where E is the effective activation energy describing the overall
crystallization process, n is the growth (Avrami) exponent and Ky
the rate constant, depend on the operating nucleation and growth
modes [18,19].
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2.1. Afify method [20]

To determine the effective activation energy for crystallization,
E¢, under isothermal or non-isothermal conditions, Eq. (1) can be
written as

In(1 — x) = —(kt)" (3)

the important condition in this method is at x=0.63205 where
In(1 — x)=—1.This condition has been discussed in early work [21].
The advantage of this condition is that the results at kg g3 are inde-
pendent of the value of n, contrary to Avrami’s method, which is
dependent on the value of n. Eq. (3) at x =0.63205, gives

1 = (ko.g3t0.63)" (4)
ie.
1
ko.63 = o (5)
0.63

The value of the effective overall reaction rate at y =0.63205,
(ko g3), can be determined from Eq. (5), i.e. from the inverse of the
time at x=0.63205, (1/tp63). The values of x=0.63205, tpg3 has
been determined using the partial area technique [22] described in
the experimental techniques.

The effective overall reaction rate at y =0.63205 (kgg3) can be
written as

—E
ko.g3 = ko exp (R Tocs ) (6)

where E. can be determined from the slope of In(kgg3) vs. 1/Tge3
graphs, obtained from different thermograms. In the isothermal
condition, the thermograms are carried out at different tempera-
tures, but in case of non-isothermal condition, the thermograms
are carried out at different heating rates.

To determine the reaction order, n, Eq. (3) can be written as

In[—In(1 — x)] = nin(k) + nIn(t) (7)

At constant temperature (k is constant), the relation between
In[-In(1 — x)] and In(t) gives the reaction order, n. In the isothermal
condition, the above graph is carried out from one thermogram, but
in the case of non-isothermal condition, the graph is carried out, at
constant temperature, from different thermograms, i.e. different
heating rates.

2.2. Bansal’s method

In a non-isothermal DSC experiment the rate constant K,
changes continually with time due to the change of the temperature
and Eq. (1) can be rewritten in the form [23]

t n
x(t)=1—exp [— (/ K[T(f)]di) ] =1-—exp(—-I") (8)
0

Deriving Eq. (8) with respect to time, the crystallization rate is
obtained as

X =nK(1 -0 9)

The maximum rate of crystallization occurs at the peak of the
exotherm at time tp and temperature Tp [17], the differentiation of
Eq. (9) with respect to time yields

oEl,

¥ =nKy,(I"), —(n—1)K, - — =0 10
X p( )p ( Kp RTg (10)

The time integral in Eq. (8) is transformed to temperature inte-
gral yielding

T
K —-E -
I(T)=-2 [ exp—=dT (11)
o Jr RT
0
whichis represented by several approximate analytical expressions
[24-27] by the sum of the alternating series
_y k=00 k
eV (=1)(k+1)!

S0 =5 7 (12)

where § = E/RT. Considering that, in this type of series the error pro-
duced is this less than the first term neglected and bearing in mind
that, in most crystallization reactions j = E/RT > 1, it possible to
use only the two first terms of this series and the error introduced is
not greater than 1%. By assuming that, T2(1 — 2RT/E)exp(—E/RT) >
Tg(l — 2RTy/E)exp(—E/RTy)

Eq. (11) becomes

I = KoE(aeR) TeVy=2(1 -2y~ 1) (13)

considering the assumptions used to get Eq. (13) and taking the
logarithm of the quoted equation leads to an expression that in the
range of values of y =E/RT, 25 <y <55, can be fitted very satisfacto-
rily by a linear approximation (an additional assumption) yielding
(28]

In[eYy=2(1 — 2y~1)] = -5.304 — 1.052y (14)
Substituting into Eq. (13)
I = KoE(aR) 'exp(—5.304 — 1.052y) (15)

where the above-mentioned approximation might introduce 5.8%
error in the value of eYy=2(1—2y~1) in the worst cases.
Substituting (y =E/RT) and (K = Ky exp(—E/RT)) into Eq. (15) gives

I = RT2K(«E)" (1 — 2RTJE) (16)

if it is assumed that T>» Ty so that, yg can be taken as infinity, the
last expression of the integral I is

1—2RT,\ /"
1p=(7n5 p) (17)

Substituting I into Eq. (10) and taking the logarithmic form

T3 KoR E (2RI, 1

In () o (S8) o () (1 1) (18)
note that, Eq. (18) reduces to the Kissinger’s expression [29] for
the case of n=1 as one might have anticipated since this corre-
sponds to the homogeneous reaction case. Thus, it can be seen
that, the Kissinger’s method is appropriate for the analysis not only
for homogeneous reactions, but also for the analysis of heteroge-
neous reactions which are described by the JMA equation in the
isothermal experiments [17]. The approximationin Eq. (18) RHS=0
yielding,

T2 —E KoR
Py _ = _ 2o
ln(a)_RTP ln(E) (19)
where the quoted approximation might introduce a 3% error in the
value of E/R in the worst cases.
Finally, it should be noted that, the term (—2RT/E) in Eq. (16) is

negligible in comparison to the unity, since in most crystallization
reactions E/RT > 25 [17]. Therefore, Eq. (16) may be rewritten

I = RT2K(aE)"! (20)
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