ELSEVIER

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jallcom

Effect of annealing and O₂ pressure on structural and optical properties of pulsed laser deposited TiO₂ thin films

Gaurav Shukla^a, Pratima K. Mishra^b, Alika Khare^{a,*}

- ^a Laser and Photonics Lab, Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, India
- ^b Advanced Materials Technology Department, Institute of Materials and Minerals Technology, CSIR, Bhubaneshwar 751013, India

ARTICLE INFO

Article history: Received 31 August 2009 Accepted 11 September 2009 Available online 19 September 2009

PACS: 81.05.Dz 68.55.—a 81.15.Fg

Keywords:
Pulsed laser deposition
Titanium oxide
Thin film
Post-annealing

ABSTRACT

In this paper, effect of annealing and O_2 pressure on the structural and optical properties of pulsed laser deposited thin films of TiO₂ is reported. XRD, FTIR spectra and SEM images confirm that at high annealing temperatures, the rutile phase and crystalline quality of thin films increases. Higher pressure of O_2 during deposition improves the rutile phase and favors the rod like growth of TiO₂ thin film. The red shift in photoluminescence (PL) spectra of TiO₂ thin films with annealing temperature is reported. Contact angle measurement data for the thin films reveals the hydrophobic nature of the films. The very low reflectivity (\sim 10%) reported in this paper may be promising for anti-reflection coating applications of pulsed laser deposited TiO₂ thin films.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

TiO₂ is an important n-type wide band gap II–VI semiconductor with high refractive index and high dielectric constant. TiO₂ thin films have drawn a great deal of attention in recent years due to their wide application in solar cells, photo catalyst and self cleaning windows [1–3]. TiO₂ thin films have found applications in multilayer optical filter [4], anti-reflection coating [5] and metal-insulator–semiconductor (MIS) devices [6]. Room temperature grown TiO₂ thin films can have three structural forms anatase (tetragonal), rutile (tetragonal) and brookite (orthorhombic). Annealing at temperatures between 300 °C and 800 °C initiates a transition from primary anatase to the rutile phase [7,8].

Deposition of TiO₂ in anatase as well as rutile phase has been reported very well in the literature [5,7,9]. Among all the reported techniques, pulsed laser deposition (PLD) provides the precise manipulation of the properties of thin films of TiO₂ by controlling the deposition parameters [9–14]. Normally, TiO₂ thin films deposited at room temperature are amorphous with the anatase phase which gets converted to rutile phase after annealing [15] as former being thermodynamically unstable. Ambient oxygen pressure and post-deposition annealing are the most important

parameters that affect the phase formation, morphology and microstructures and optical properties of pulsed laser deposited TiO₂ thin films. Xin et al. [16] discussed the effect of oxygen pressure on the structural properties of Co-doped TiO₂ films and Long et al. [17] have reported effect of substrate temperature and ambient pressure on the microstructure of TiO₂ films. However, the effect of ambient pressure and post-annealing is not well documented in the literature for room temperature deposited TiO₂ thin films using PLD.

In the present paper, we have reported pulsed laser deposition of high quality ${\rm TiO_2}$ thin films at room temperature in oxygen ambient using high purity ${\rm TiO_2}$ pellet. The effect of ambient pressure ${\rm (O_2)}$ and post-deposition annealing over structural, optical properties and the contact angle with water of pulsed laser deposited ${\rm TiO_2}$ thin films is presented.

2. Experimental setup

The experimental setup used to deposit the TiO_2 thin films is shown in Fig. 1. The second harmonic of Q switched Nd:YAG laser (Model—Quanta systems-HYL101, 400 mJ/pulse in fundamental with 8 ns pulse duration and 10 Hz repetition rate) is focused on to the rutile TiO_2 of high purity (sintered at $1100\,^{\circ}$ C for 3 h and at $1200\,^{\circ}$ C for 18 h) target with a lens of focal length of 35 cm. The target was mounted inside the vacuum chamber through a motorized vacuum feed through and continuously moved in order to avoid piercing with the repeated shots of laser. The chamber was initially evacuated to a base pressure of 10^{-6} mbar and then filled with O_2 gas in the pressure range of 10^{-1} mbar to 10^{-3} mbar. When the high power laser was focused on to the TiO_2 target in the ambient of O_2 gas, plasma containing neutral

^{*} Corresponding author. Tel.: +91 361 258 2705; fax: +91 361 2692749. E-mail address: alika@iitg.ernet.in (A. Khare).

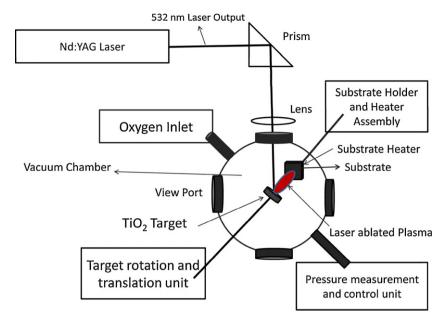


Fig. 1. Experimental setup.

and excited species of titanium and oxygen expanded and undergoes through the proper dynamics and finally thin films of ${\rm TiO_2}$ were deposited on ultra sonically cleaned, polished glass substrates placed parallel to and 3 cm apart from the target at room temperature as shown in Fig. 1. Deposition time was kept fixed for 30 min for all the results reported in this paper. After deposition, ${\rm TiO_2}$ thin films were annealed in high temperature furnace for 6 h at different temperatures in the

range of 400–650 °C in air. These films of TiO₂ were scanned with SEM (LEO-1430vp) for surface morphology and XRD (SEIFERT 3003) for the crystal structure. Optical characterizations were performed with UV–vis spectrophotometer (Cary 100 Varian), photoluminescence (Thermo-spectronic Aminco Bowman Series 2) and FTIR (Horriba Jobin Yuvon). Contact angle measurement of TiO₂ films annealed at different temperature was performed by the pendant drop technique using Phoenix

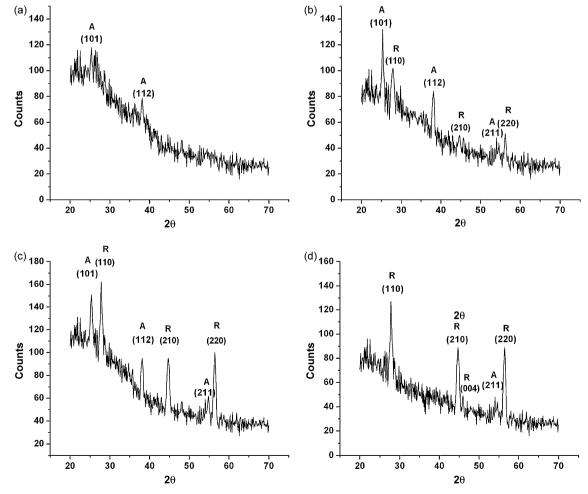


Fig. 2. XRD pattern for TiO₂ thin films deposited at 10⁻¹ mbar O₂ pressure at room temperature; post-annealed at (a) as-deposited (b) 400 °C (c) 500 °C and (d) 650 °C.

Download English Version:

https://daneshyari.com/en/article/1621232

Download Persian Version:

https://daneshyari.com/article/1621232

Daneshyari.com