ELSEVIER

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jallcom

Characterization and dielectric behavior of a new dielectric ceramics $Ca(Mg_{1/3}Nb_{2/3})O_3-(Ca_{0.8}Sr_{0.2})TiO_3$ at microwave frequencies

Cheng-Liang Huang*, Jhih-Yong Chen, Bing-Jing Li

Department of Electrical Engineering, National Cheng Kung University, 1 University Road, Tainan 70101, Taiwan

ARTICLE INFO

Article history: Received 20 February 2009 Received in revised form 28 April 2009 Accepted 28 April 2009 Available online 5 May 2009

Keywords: Crystal growth Dielectric response

ABSTRACT

The crystal structures, phase compositions and the microwave dielectric properties of the (1-x)Ca $(Mg_{1/3}Nb_{2/3})O_3$ – $x(Ca_{0.8}Sr_{0.2})$ TiO $_3$ perovskite-based composites prepared by the conventional solid state route have been investigated. The formation of solid solution is confirmed by the XRD patterns. A rapid grain growth is observed at temperatures higher than $1470\,^{\circ}$ C, which would lead to a decrease in the density and $Q \times f$ of the ceramics. The temperature coefficient of resonant frequency increases with increasing $(Ca_{0.8}Sr_{0.2})$ TiO $_3$ content and tunes through near zero at x = 0.3. Specimen using 0.7Ca $(Mg_{1/3}Nb_{2/3})O_3$ –0.3(Ca $_{0.8}Sr_{0.2}$)TiO $_3$ possesses an excellent combination of microwave dielectric properties: $\varepsilon_r \sim 43.75$, $Q \times f \sim 45,200\,\text{GHz}$ (where f = 6.3 GHz is the resonant frequency) and $\tau_f \sim -4.2\,\text{ppm}/^{\circ}$ C. It is proposed as a suitable candidate material for small-sized GPS patch antennas.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

Miniaturization of patch antennas for volume efficiency in global positioning system (GPS) has become a primary issue in these few years. In particular, materials with dielectric constant in the 40s can reduce the antenna size from 25 mm \times 25 mm to 18 mm \times 18 mm or even to 15 mm \times 15 mm. Several research efforts have recently been dedicated toward the development of such dielectric materials [1–5]. In addition, a high $Q \times f$ is also required [6,7] to simultaneously retain a small return loss and achieve a wide bandwidth of the GPS antennas for practical applications.

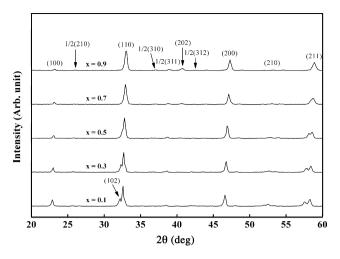
Several complex perovskites ceramics $A(B_{1/3}^{2+}B_{2/3}^{5+})O_3$ (where A=Ca, Ba; $B^{2+}=Mg$, Zn; $B^{5+}=Nb$, Ta) have been reported due to their excellent microwave dielectric properties [5,8–11]. Among these compounds, $Ca(Mg_{1/3}Nb_{2/3})O_3$ has an 1:2 ordered monoclinic structure, via the chemical ordering of B-site cations and structural ordering and disordering had been widely discussed. In addition, it also possesses a high dielectric constant ($\varepsilon_r \sim 28$), a high quality factor ($Q \times f$ value $\sim 58,000$ GHz at 7 GHz) and a negative τ_f value (-48 ppm/°C) [11], and has found wide applications as the dielectrics in resonators, filters and antennas for communication. In order to compensate the τ_f of the $Ca(Mg_{1/3}Nb_{2/3})O_3$, $CaTiO_3$ was added to form the $0.4CaTiO_3-0.6Ca(Mg_{1/3}Nb_{2/3})O_3$ solid solution with an $\varepsilon_r \sim 48$, a $Q \times f$ value $\sim 32,500$ GHz and a τ_f value ~ -2 ppm/°C [5]. However, its $Q \times f$ still needs to be

promoted before putting it to a practical application as GPS antennas.

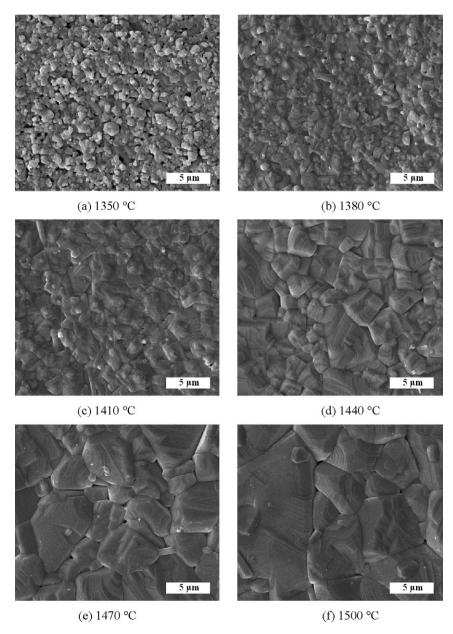
In stead of CaTiO₃, (Ca_{0.8}Sr_{0.2})TiO₃ ceramics ($\varepsilon_r \sim 181$, $Q \times f \sim 8300\,\text{GHz}$, $\tau_f \sim 991\,\text{ppm}/^\circ\text{C}$ [12]), having a much higher $Q \times f$ than that of CaTiO₃, was chosen as a τ_f compensator for Ca(Mg_{1/3}Nb_{2/3})O₃. Consequently, not only compensation for the τ_f can be made by employing the solid solutions of Ca(Mg_{1/3}Nb_{2/3})O₃–(Ca_{0.8}Sr_{0.2})TiO₃ ceramics, it also shows a more than 40% promotion in the $Q \times f$. In addition, the X-ray diffraction (XRD) patterning and scanning electron microscopy (SEM) analysis were also employed to study the crystal structures and microstructures of the ceramics. The correlation between the microstructure and the $Q \times f$ value was also investigated.

2. Experimental procedure

Mixed oxide powders of $(1-x)Ca(Mg_{1/3}Nb_{2/3})O_3-x(Ca_{0.8}Sr_{0.2})TiO_3$ (x=0.1-0.9) were prepared from $CaCO_3$, $SrCO_3$, MgO, Nb_2O_5 and TiO_2 with purity higher than 99.9% by conventional mixed-oxide method. The powders were separately prepared according to the desired stoichiometry $Ca(Mg_{1/3}Nb_{2/3})O_3$ and $(Ca_{0.8}Sr_{0.2})TiO_3$, and ground in distilled water for 24 h in a ball mill with agate balls. The prepared powders were dried and calcined at $1100^{\circ}C$ for 4 h in air. The calcined powders were mixed according to the molar fraction $(1-x)Ca(Mg_{1/3}Nb_{2/3})O_3-x(Ca_{0.8}Sr_{0.2})TiO_3$ and re-milled for 24 h. The fine powder with 3 wt% of a 10% solution of PVA as a binder (PVA 500, Showa, Japan) was pressed into pellets with dimensions of 11 mm in diameter and 5 mm in thickness under the pressure of 200 MPa. These pellets were sintered at temperatures of $1350-1500^{\circ}C$ for 4 h in air. The heating rate and the cooling rate were both set at $10^{\circ}C/min$.


The crystalline phases of the sintered ceramics were identified by XRD using Cu K α (λ = 0.15406 nm) radiation with a Siemens D5000 diffractometer operated at 40 kV and 40 mA. The microstructures were evaluated for thermal-etched surfaces by scanning electron microscopy (SEM; Philips XL-40FEG, Eindhoven, the Netherlands). The apparent densities of the sintered pellets were measured by the

^{*} Corresponding author. Tel.: +886 6 2757575x62390; fax: +886 6 2345482. E-mail address: huangcl@mail.ncku.edu.tw (C.-L. Huang).


Table 1 Microwave dielectric properties of $(1-x)Ca(Mg_{1/3}Nb_{2/3})O_3-x(Ca_{0.8}Sr_{0.2})TiO_3$ ceramic system sintered at 1440 °C for 4 h.

x-Value	Apparent density (g/cm ³)	ε_r	$Q \times f$	τ_f (ppm/°C)
0.9	3.58	97.84	9,600	611.9
0.7	3.84	71.15	14,600	293.8
0.5	4.11	54.81	31,000	64.4
0.3	4.28	43.75	45,200	-4.2
0.1	4.36	33.51	52,700	-31.3

Archimedes method. The dielectric constant (ε_r) and the quality factor values (Q) at microwave frequencies were measured using the Hakki–Coleman dielectric resonator method [13,14]. A system combining a HP8757D network analyzer and a HP8350B sweep oscillator was employed in the measurement. For temperature coefficient of resonant frequency (τ_f) , the technique is the same as that of quality factor measurement. The test cavity is placed over a thermostat and the temperature range used is from 20 to 80 °C.

Fig. 1. X-ray diffraction patterns of (1-x)Ca $(Mg_{1/3}Nb_{2/3})O_3-x(Ca_{0.8}Sr_{0.2})$ TiO $_3$ ceramics sintered at 1440 °C for 4 h.

 $\textbf{Fig. 2.} \;\; \textbf{SEM} \;\; \textbf{photographs} \;\; \textbf{of} \;\; \textbf{0.7Ca} \\ (\textbf{Mg}_{1/3} \textbf{Nb}_{2/3} \textbf{)} \\ \textbf{O}_{3} - \textbf{0.3} \\ (\textbf{Ca}_{0.8} \textbf{Sr}_{0.2}) \\ \textbf{TiO}_{3} \;\; \textbf{ceramics} \;\; \textbf{sintered} \;\; \textbf{at} \;\; \textbf{(a)} \;\; \textbf{1380} \\ \text{°C;} \;\; \textbf{(b)} \;\; \textbf{1380} \\ \text{°C;} \;\; \textbf{(c)} \;\; \textbf{1410} \\ \text{°C;} \;\; \textbf{(d)} \;\; \textbf{1440} \\ \text{°C;} \;\; \textbf{(e)} \;\; \textbf{1470} \\ \text{°C;} \;\; \textbf{(f)} \;\; \textbf{1500} \\ \text{°C} \;\; \textbf{(f)} \;\; \textbf$

Download English Version:

https://daneshyari.com/en/article/1621347

Download Persian Version:

https://daneshyari.com/article/1621347

<u>Daneshyari.com</u>