FISHVIER

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jallcom

Phase relationships and crystallography of annealed alloys in the Ce₅Si₄-Ce₅Ge₄ pseudobinary system

H. Zhang a,b, Ya. Mudryk, M. Zou, V.K. Pecharsky, K.A. Gschneidner Jr. b,c,*, Y. Long

- ^a School of Materials Science and Engineering, University of Science and Technology of Beijing, 100083, PR China
- ^b Ames Laboratory of the U.S. Department of Energy, Iowa State University, Ames, IA 50011-3020, USA
- ^c Department of Materials Science and Engineering, Iowa State University, Ames, IA 50011-2300, USA

ARTICLE INFO

Article history: Received 29 June 2009 Accepted 20 July 2009 Available online 30 July 2009

Keywords:
Rare earth compounds
Crystal structure
Phase diagram
Ce₅Si₄
Ce₅Ge₄
Ce₅Si₄—Ce₅Ge₄ pseudobinary system

ABSTRACT

The phase relationships of annealed alloys in the $Ce_5Si_{4-x}Ge_x$ system were determined by X-ray powder diffraction (XRD). Two structurally distinct terminal phase regions were observed in this system: the Ce_5Si_4 -based solid solution ($0 \le x < 2.85$) crystallizing in the Zr_5Si_4 -type tetragonal structure with space group $P4_12_12$, and the Ce_5Ge_4 -based solid solution ($3.35 < x \le 4$) crystallizing in the Sm_5Ge_4 -type orthorhombic structure with space group Pnma. An intermediate phase, which has a narrow composition range with the monoclinic $Gd_5Si_2Ge_2$ -type structure, space group $P112_1/a$, was found to exist at $x = 2.95 \pm 0.05$. The Rietveld powder diffraction profile fitting technique was used to refine the crystal structures, lattice parameters, and the atomic positions. The phase relationships of the $Ce_5Si_{4-x}Ge_x$ pseudobinary system after heat treatment were established from these data.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

The binary compounds R_5Si_4 and R_5Ge_4 were discovered by Smith et al. [1], where R is a rare earth metal. They reported that the germanides with R = Nd, Sm, Gd, Tb, Er, and Y and the silicides with R = Y, Tb and Er adopt the same Sm_5Ge_4 orthorhombic crystal structure [2], while Nd_5Si_4 crystallized in a tetragonal lattice. Later some authors reported that the R_5Si_4 phases with R = La, Ce, Pr and Nd have the tetragonal Zr_5Si_4 -type structure, and those with R = Sm, Gd, Tb, Dy, Er and Y crystallize in the Sm_5Ge_4 -type structure, and all R_5Ge_4 compounds (R = La, Ce, Pr, Nd, Sm, Gd, Tb, Dy, Ho, Er, Tm, Lu and Y) are also isostructural with the Sm_5Ge_4 -type structure [3]. Soon after, Holtzberg et al. [4] confirmed that the 5:4 silicides and germanides for R = Gd, Tb, Dy, Ho and Er had the orthorhombic Sm_5Ge_4 -type structure.

The discovery of the giant magnetocaloric effect (GMCE) in $Gd_5Si_2Ge_2$ [5] triggered a subsequent extensive investigation of the pseudobinary $R_5Si_xGe_{4-x}$ systems. In 1997, Pecharsky and Gschneidner [6] reported that there are three structurally distinct phase regions in the $Gd_5Si_xGe_{4-x}$ system: Gd_5Si_4 -type orthorhombic ($2 < x \le 4$), Sm_5Ge_4 -type orthorhombic ($0 < x \le 0.8$), and $Gd_5Si_2Ge_2$ -

E-mail address: cagey@ameslab.gov (K.A. Gschneidner Jr.).

type solid solution, which is a monoclinically distorted derivative of the two closely related orthorhombic structures (0.96 \leq x \leq 2). They also proposed that in the pseudobinary $Gd_5Si_4-Gd_5Ge_4$ system, the large differences in the magnetic properties [6,7], including the appearance of the GMCE, are intimately related to the crystallography of these three phases in the paramagnetic state.

In 2002, Bulanova et al. [18] investigated the Ce–Si binary system and reported that Ce_5Si_4 adopts the tetragonal Zr_5Si_4 -type structure. Later, Vejpravová et al. [19] studied the crystal structure and magnetic behaviors of Ce_5Si_4 , they found a paramagnetic (PM)–antiferromagnetic (AFM) phase transition around T_N = 5.6 K. But neither the physical properties nor the phase relationships in the $Ce_5Si_{4-x}Ge_x$ system have been determined. In our work, we have investigated the phase relationships, the crystal structures, the magnetic and thermodynamic properties of the *as-cast* and annealed alloys in the $Ce_5Si_{4-x}Ge_x$ pseudobinary system. Here, we report the phase relationships and the crystal structures for alloys in the annealed condition in the $Ce_5Si_{4-x}Ge_x$ system, while the results for the *as-cast* alloys will be reported elsewhere.

^{*} Corresponding author at: Ames Laboratory of the U.S. Department of Energy, Iowa State University, Ames, IA 50011-3020, USA. Tel.: +1 515 294 7931; fax: +1 515 294 9579.

Table 1Lattice parameters and R factors of structure refinements for the annealed Ce₅Si₄, Ce₅SiGe₃ and Ce₅Ge₄ (a two-phase alloy) compositions.

	Ce ₅ Si ₄	Ce ₅ SiGe ₃		Ce ₅ Ge ₄
Space group	P4 ₁ 2 ₁ 2	P112 ₁ /a+Pnma		Pnma
a (Å)	7.9539(9)	7.9305(2)	7.9554(5)	7.9747(1)
b (Å)	7.9539(9)	15.2713(6)	15.2463(7)	15.2687(9)
c (Å)	15.0723(2)	8.0609(1)	8.0570(1)	8.0749(2)
$V(Å^3)$	953.5(6)	974.4(8)	977.2(4)	983.2(4)
γ (°)	90	93.452(7)	90	90
R_P (%)	7.31	9.83	9.83	10.98
R_{wp} (%)	9.31	12.89	12.89	14.20
R_{exp} (%)	6.58	6.38	6.38	6.53
Amt. phase present (vol.%)	$\sim 96^a$	27 ^a	73ª	$\sim\!86^a$

^a See text for details.

2. Experimental

A total of 17 alloys with the $Ce_5Si_{4-x}Ge_x$ stoichiometry, where x varies from 0 to 4 (see Table 3), were prepared by arc melting the mixtures of pure components on a water-cooled copper hearth under argon atmosphere. The Ce metal was prepared by the Materials Preparation Center of the Ames Laboratory [20] and it was 99.8 at.% (99.95 wt.%) pure with the major impurities, given as ppm at. (wt. ppm), as follows: O-201(23), N-110(11), C-199(17), Si-897(180) and Fe-30(10). The Si and Ge were purchased from CERAC Inc and were at least 99.9995 wt.% pure. Each alloy was melted six times with the button being turned over after each melting to ensure the homogeneity of the alloys. The weight losses after arc melting were negligible (<0.2 wt.%), and, therefore, the alloy compositions were accepted as nominally prepared. The as-cast alloys, which were sealed in quartz tubes backfilled with helium, were annealed at 1273 K for 1 week, followed by an ice-water quench.

The X-ray powder diffraction data were collected on a PANalytical X'Pert PRO diffractometer using monochromatic Cu K α_1 radiation over a 2θ range of $20-80^\circ$. The Rietveld powder diffraction profile fitting technique was used to refine the crystal structures of the Ce₅Si_{4-x}Ge_x compounds using the LHPM Rietica software [21].

3. Results and discussion

3.1. Crystallography of the annealed $Ce_5Si_{4-x}Ge_x$ alloys

In the $as\text{-}cast\ Ce_5Si_{4-x}Ge_x$ alloys, there are two distinct terminal phase regions as x varies from 0 to 4: the Ce $_5Si_4$ -based solid solution alloys $(0 \le x < 2.15)$ crystallize in the Zr $_5Si_4$ -type tetragonal crystal structure, and the Ce $_5Ge_4$ -based solid solution alloys $(2.4 < x \le 4)$ crystallize in Sm_5Ge_4 -type orthorhombic structure. When $2.15 \le x < 2.225$ the samples consist of two phases – the tetragonal phase and the $Gd_5Si_2Ge_2$ -type monoclinic phase – and for $2.225 \le x \le 2.4$ the $Gd_5Si_2Ge_2$ -type monoclinic phase coexists with Sm_5Ge_4 -type orthorhombic phase. Thus, in the as-cast alloys, the monoclinic $Gd_5Si_2Ge_2$ -type structure exists over a narrow composition at $x \approx 2.225$.

The X-ray powder diffraction investigation of the annealed alloys in the Ce₅Si_{4-x}Ge_x pseudobinary system reveals that there are also two structurally distinct terminal phase regions in the system after heat treatment. The Ce₅Si₄-based solid solution alloys with x ranging from 0 to 2.85 crystallize in the tetragonal Zr₅Si₄-type structure with the space group P4₁2₁2, and the Ce_5Ge_4 -based solid solution alloys with $3.35 < x \le 4$ crystallize in orthorhombic Sm₅Ge₄-type structure with space group Pnma [2]. The Ce₅Si_{1.1}Ge_{2.9} alloy consists of two phases: the tetragonal phase and the Gd₅Si₂Ge₂-type monoclinic phase, while the alloys with $2.95 \le x \le 3.35$ are also two-phase alloys: the Gd₅Si₂Ge₂-type monoclinic phase and the Sm₅Ge₄-type orthorhombic phase. However, in comparison with the as-cast alloys, the boundaries of two-phase regions and Sm₅Ge₄-type orthorhombic phase region have been shifted toward the Ge-rich side after annealing. The XRD patterns of several representative annealed Ce₅Si_{4-x}Ge_x samples with different Ge contents are shown in Fig. 1.

The crystal structures of the annealed Ce₅Si₄, Ce₅Ge₄ and Ce₅SiGe₃ alloys were refined by using the Rietveld powder diffraction profile fitting method and the comparison of the observed and

Fig. 1. The XRD patterns of six representative annealed $Ce_5Si_{4-x}Ge_x$ alloys with different Ge contents.

calculated diffraction patterns is shown in Figs. 2–4. The lattice parameters of these compounds together with the R factors of the structure refinements are given in Table 1. The atomic parameters for the Zr_5Si_4 -type tetragonal phase (Ce_5Si_4), the Si_2Ge_2 -type monoclinic phase (Si_4), and the Si_5Ge_4 -type orthorhombic phase (Si_4) are listed in Table 2.

 Ce_5Si_4 crystallizes in the tetragonal Zr_5Si_4 -type structure with the space group $P4_12_12$. The Ce atoms occupy three crystallographic positions (Table 2): two 8b and one 4a, while the Si atoms are distributed over two 8b positions. In addition, a small amount

Fig. 2. The observed (dots) and calculated intensities (line drawn through the data points) of the full refined powder diffraction pattern of annealed Ce₅Si₄. The upper set of vertical bars indicates the calculated positions of the Bragg peaks of the tetragonal Ce₅Si₄ phase with the Zr₅Si₄-type structure, while the lower set of bars corresponds to the calculated positions of the Bragg peaks of the CeSi impurity. The difference, $Y_{cobs} - Y_{calc}$, is shown at bottom of the plot. R_P is profile residual and R_B is derived Bragg residual.

Download English Version:

https://daneshyari.com/en/article/1621734

Download Persian Version:

https://daneshyari.com/article/1621734

<u>Daneshyari.com</u>