

Contents lists available at ScienceDirect

Journal of Alloys and Compounds

journal homepage: www.elsevier.com/locate/jallcom

Low-temperature sintered Zn₂TiO₄:TiO₂ with near-zero temperature coefficient of resonant frequency at microwave frequency

Chuan-Feng Shih^{a,b,*}, Wei-Min Li^a, Ming-Min Lin^a, Chu-Yun Hsiao^a, Kuang-Teng Hung^a

^a Department of Electrical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan

^b Center for Micro/Nano Science and Technology, National Cheng Kung University, Tainan, 70101, Taiwan

ARTICLE INFO

Article history: Received 22 February 2009 Received in revised form 19 May 2009 Accepted 24 May 2009 Available online 17 June 2009

Keywords: Zinc titanate Microwave dielectrics LTCC Nanowires

1. Introduction

ZnO-TiO₂ alloy system has been shown to have great potential for use in low-temperature co-fired ceramics (LTCCs), microwave dielectrics, phosphors, and catalysts [1-5]. Three compounds are known to exist in the ZnO-TiO₂ system. Cubic Zn₂Ti₃O₈ has been regarded as a low-temperature phase of hexagonal zinc metatitanate (*h*-ZnTiO₃), stabilizing in \sim 600–800°C, transforming to *h*-ZnTiO₃ at \sim 820 °C [6]. The *h*-ZnTiO₃ decomposes into rutile and zinc orthotitanate (Zn_2TiO_4) when the temperature exceeds 945 °C. Particularly, the ilmentite ZnTiO₃ draw the most attention among this alloy system due to it potential applications to the LTCCs and microwave dielectrics. As a good microwave dielectric, however, single-phase ZnTiO₃ ceramic is rarely obtained solely from the conventional solid-state reaction method because it decomposes at high temperature and poor sinterability at low-temperature $(<945 \circ C)$ [7]. Generally, the microwave dielectric properties of h-ZnTiO₃ sintered below 945 °C were: dielectric constant (ε_r)=22, temperature coefficient of resonant frequency $(\tau_f) = -60 \text{ ppm}/^{\circ}\text{C}$, and quality factor $(Q \times f) = 40,000$ GHz. Increasing the sintering temperature to exceed 945 °C always degraded the $Q \times f(< 20,000 \text{ GHz})$ [1,2].

ABSTRACT

This work presents the microwave dielectric properties of TiO₂ incorporated Zn₂TiO₄ sintered at low-temperatures. The Zn₂TiO₄ was synthesized using ZnO and TiO₂ nanowires as starting materials. Within the interim studied (TiO₂ = 0–12%), the bulk density, the dielectric constant, and the quality factor markedly increased with sintering temperature. When the TiO₂ content (*x*) was 8% (970 °C), the value of quality factor multiples its resonant frequency of the Zn₂TiO₄:8% TiO₂ achieved a maximum of ~35,000 GHz. From XRD patterns, the phase stability of TiO₂ added Zn₂TiO₄ changed when the TiO₂ content exceeded 10 wt%. Further addition of TiO₂ up to 12% approached zero, with high quality factor and *k* values of 30,000 GHz and 22, respectively. The high quality factor was attributed to the good cyrstallinity of Zn₂TiO₄. The fabricated Zn₂TiO₄:12% TiO₂ ceramic is suitable for microwave dielectric applications.

© 2009 Elsevier B.V. All rights reserved.

In the same alloy system, Zn_2TiO_4 ($\varepsilon_r = 21$, $\tau_f = -60 \text{ ppm}/^\circ C$, $Q \times f = 20,000 \text{ GHz}$) [8] is also a good candidate for microwave dielectric applications. Compared with ZnTiO_3, Zn_2TiO_4 has several advantages. For instance, it can be easily formed via solid-state sintering of the 2ZnO:1TiO_2 at elevated temperature. However, the Zn_2TiO_4 shows similar dielectric constant but much poor quality factor at microwave frequencies than the ZnTiO_3. It is known that the quality factor is related not only to the crystal structure of the dielectrics, but also the material imperfections. Accordingly, the sintering temperature of Zn_2TiO_4 -based microwave dielectrics should be high enough to overcome the low quality factor problem.

Recently, Kim reported the microwave dielectric properties of the titanium incorporated Zn_2TiO_4 [2]. Accordingly, the TiO_2 forms solid solution within the Zn_2TiO_4 matrix that improves the dielectric properties of Zn_2TiO_4 . However, the required temperature (~1100 °C) is still high to obtain satisfying dielectric properties. More recently, we reported a method to synthesize the high quality Zn_2TiO_4 with promising microwave properties at low-temperature (<1000 °C) [9,10]. Taking advantages of the high specific surface area of the TiO₂ and ZnO nanowires, the Zn_2TiO_4 was sintered via a calcine and additives-free process. Further, we found that the Zn_2TiO_4 showed negative τ_f value in a wide temperature range (900–1000 °C). However, from the view point of practical application, the near-zero τ_f is desired to prevent the disturbance from temperature variation.

In this paper, an attempt was made to achieve the near-zero τ_f Zn₂TiO₄ by incorporating the TiO₂. Due to the high crystallinity of the Zn₂TiO₄ prepared by nano-scaled starting materials, the

^{*} Corresponding author at: Department of Electrical Engineering, National Cheng Kung University, Tainan, 70101, Taiwan. Tel.: +886 6 2757575x62398; fax: +886 6 2080687.

E-mail address: cfshih@mail.ncku.edu.tw (C.-F. Shih).

^{0925-8388/\$ -} see front matter © 2009 Elsevier B.V. All rights reserved. doi:10.1016/j.jallcom.2009.05.153

Fig. 1. HR-TEM image of Zn_2TiO_4 sintered at 970 $^\circ$ C for 4 h. Inset shows selection-area diffraction pattern of $Zn_2TiO_4.$

Zn₂TiO₄:*x*TiO₂ (*x*=0.02–0.12) showed good dielectric properties even at low sintering temperatures. When *x*=0.08 and 0.12, the $Q \times f$ value reached a maximum of ~35,000 GHz and the value of τ_f approached zero, respectively.

2. Experimental

ZnO and TiO₂ nanopowders were prepared separately by hydrothermal processes as reported previously [9,10]. TiO₂:ZnO (1:1 molar ratio) nanowires were mixed and ball-milled for 24 h with zirconia beads and distilled water. The milled mixture was dried at 80 °C, ground, and sieved through a 100 mesh screen. The powders were calcined at 850 °C for 2 h to form the spinel Zn₂TiO₄. After the calcination, powders were ground and sieved. 2 wt% polyvinyl alcohol (PVA) solution was added as a binder and the additional anatase TiO₂ nanowires (2–12 wt%) were added at this stage. A disk with a diameter of 11 mm and a thickness of 5 mm was formed using uniaxial pressing. The compacts were sintered for 4 h at elevated temperatures (900, 930, 970, and 1000 °C).

The structures of the ceramic compacts were examined by X-ray diffractometry (XRD; Siemens D500). Field-emission scanning electron microscope (FESEM; Philips XL-40FEG) was used to examine the morphology of the samples. High-resolution transmission electron microscopy (HR-TEM, JEOL 2100) was used to determine the presented phase. The apparent densities (*d*) of the sintered compacts were determined by the Archimedes method. The relative dielectric constant (ε_r) and quality factor at microwave frequencies were measured using the Hakki–Coleman dielectric resonator method [11]. τ_f at microwave frequencies was measured in the temperature range from 25 to 80 °C, and was defined as

$$\tau_{\rm f} = \frac{\Delta f_0}{f_0 \ \Delta T} \,(\rm ppm/^{\circ}C), \tag{1}$$

where Δf_0 is the shift in the central frequency caused by a temperature change (ΔT) in the range 20–80 °C.

3. Results and discussion

Fig. 1 shows the HR-TEM image of the pure Zn_2TiO_4 sintered at 970 °C. The lattice image indicates a good lattice arrangement. Only few dislocations and defects were observed, revealing good interdiffusion and sinterability between the ZnO and TiO₂ nanowires.

Fig. 2. SEM images of Zn₂TiO₄:xTiO₂ sintered at 970 °C, where x = (a) 0.02, (b) 0.04, (c) 0.06 (d) 0.08, (e) 0.1, and (f) 0.12.

Download English Version:

https://daneshyari.com/en/article/1622111

Download Persian Version:

https://daneshyari.com/article/1622111

Daneshyari.com