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Abstract

In present work, the difference among orthogonal design, Fuzzy optimum design and artificial neural network ANN was performed on the basis
of the optimization of chemical composition of chromium white cast iron. It is found that Fuzzy optimum design is suitable for multi-objective
comprehensive evaluation, and the optimum composition of white cast iron is Cr 4%, Si 3.5%, Mn 3% and Cu 1% in the orthogonal array. On the
other hand, the orthogonal analysis is suitable for analyzing the effect of each factor on the performances and obtaining the theoretical optimum
combination of each factor for the performances and the optimum theoretical performances, respectively. Moreover, the prediction and simulation
results show that the RBFANN not only can be used to establish the model with high accuracy for the orthogonal test but also outperforms the
traditional orthogonal analysis method. Therefore, the combination of three methods can more effectively deal with the optimization of chemical
composition of materials.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

In many grinding abrasion conditions, the chromium white
cast iron has replaced wear-resistance materials, such as
medium-manganese ductile iron, high-manganese steel and low
alloy steel, etc. [1–4]. And it has been applied in grinding ball of
ball grinder, lining board, jaw plate and hammerhead, etc. [1–4],
resulting in better benefit.

There are many optimization methods for the chemical com-
position and technology of materials. Orthogonal design is an
optimization method for multifactor and multilevel cases based
on orthogonal theory. Since the factors and levels present equi-
librium distribution and regular comparability, the optimum
scheme can be rapidly obtained by variance and range analysis,
largely reduce testing numbers, shorten test time and minimize
cost. And it has been applied to optimize material’s composi-
tion, production technology, management and distribution, etc.
[5–10]. Wang et al. [5] optimized the catalyst layer compo-
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sition in PEMFC electrodes by orthogonal test method, with
the use of cell voltage–current curve and cyclic voltammogram
curve. Xu et al. [6] synthesized silica-supported iron catalysts
by orthogonal test method, and found that catalytic activities
of these catalysts were high and comparable to industrially
relevant precipitated iron catalysts. Chen et al. [7] introduced
the orthogonal experiment design method and carried out two
rounds of orthogonal experiments for the optimization of the
workspace mapping with deficient-DOF space for the PUMA
560 robot and its exoskeleton arm. Anawa and Olabi [8] used
Taguchi approach as statistical design of experiment technique
for optimizing the selected welding parameters in terms of min-
imizing the fusion zone and developed mathematical models
with better prediction capacity for describing the influence of
the selected parameters on the fusion zone area and shape. In
addition, Fuzzy optimum design is another method for multi-
objective optimization and evaluation based on Fuzzy theory,
it has been used for many fields such as management, fault
diagnosis and materials design, etc. [11–14]. Liu [13] opti-
mized the convective longitudinal fin array with constant heat
transfer coefficient by Fuzzy design. Selim and Ozkarahan [14]
developed a supply chain SC distribution network design model
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by using Fuzzy optimum approach, the computational experi-
ments showed that SC distribution network design problem can
be handled in a more flexible, robust and realistic manner by
this method than by other conventional approaches. Moreover,
artificial neural network technique has received extensive atten-
tion because of the capacities of self-adaptive, self-organization
and self-learning, resulting in solving many problems such
as pattern recognition, function approximation, fault diagno-
sis, system identification, time-series forecasting, etc. [15–24].
Sheikh-Ahmad and Twomey [15] developed an artificial neu-
ral network (ANN) constitutive model, which was successfully
applied to the sparse high strain-rate regime, for Al 7075-
T6 based on the data of orthogonal machining test. Shie [16]
optimized dry machining parameters for high-purity graphite
in end-milling process by an artificial neural network and the
sequential quadratic programming method. The results showed
that this algorithm yielded better performance than the tradi-
tional methods such as the Taguchi method and the design of
experiments approach.

The aims of this paper are to obtain optimum chemical com-
position for heat-treated chromium white cast iron and compare
the differences between and among three optimization methods.

2. Experiments

2.1. Experimental procedures

The pig iron, steel, ferrochrome, ferromanganese, ferrosilicon (shown in
Table 1) and Cu (wt 99.9%) were melted in 12 kg GGW-0.01 medium-frequency
induction furnace up to 1500–1550 ◦C (holding 30 min). A mixed rare earth mas-
ter alloy was added to the melt at 1450–1500 ◦C with slight stirring. After holding
20 min and skimming, the melt was poured at 1350–1400 ◦C into the phosphate
graphite mold to form 10 mm × 10 mm × 55 mm standard impact samples. And
then, the heat treatment (holding 40 min at 940 ± 10 ◦C, quenching in blow-
ing air, and then, holding 120 min at 250 ± 10 ◦C, cooling in the natural air)
was performed in SRJX-4-43 heat treatment furnace. The hardness and impact
toughness tests were performed on HR150A hard-meter and JB-30A impact
toughness tester, respectively.

2.2. Experimental plan

For the elaboration of experiments plan, the orthogonal method for four
factors at three levels was used. In Table 2, the factors to be studied and the
assignment of the corresponding levels are indicated. The chosen array was the
L9 (34) which has 9 rows corresponding to the number of tests (8 degrees of
freedom) with 4 columns at three levels, as shown in Table 3. The factors are
assigned to the columns. The plan of experiments is made of 9 tests (array rows)
in which the first column is assigned to Cr, the second column to Si, the third
column to Mn and the forth column to Cu, respectively. The hardness and impact
toughness are shown in Table 3.

Table 1
Compositions of charge materials

Materials C (wt%) Cr (wt%) Si (wt%) Mn (wt%)

Pig iron 3.76 – 1.14 0.363
Steel 0.2 – – –
Ferrochrome 7.8 62.03 0.98 –
Ferromanganese 7.0 – 4 65
Ferrosilicon – 0.48 75 0.48

Table 2
Assignment of the levels to the factors

Level Cr (wt%) Si (wt%) Mn (wt%) Cu (wt%)

1 4 0.8 0.6 0.5
2 5.5 2 2 1
3 7 3.5 3 2

Table 3
Orthogonal array L9 (34) and experimental results

Experiment no. Cr Si Mn Cu Hardness
(HRC)

Impact toughness
(kJ/m2)

1 1 1 1 1 49.4 35
2 2 1 2 2 54.1 36
3 3 1 3 3 55.5 37
4 1 2 2 3 46.1 41
5 2 2 3 1 53.4 42
6 3 2 1 2 56.0 34
7 1 3 3 2 52.9 44
8 2 3 1 3 53.8 32
9 3 3 2 1 52.7 35

3. Results and discussion

3.1. Orthogonal design

Tables 4 and 5 show the results of the analysis of variance with
the hardness and the impact toughness, respectively. The last
column of Tables 4 and 5 shows the percentage of contribution
(P) of each factor on the total variance, indicating the influence
degree of each factor on the result. As shown in Table 4, one can
observe that the influence of the Cr (P = 61.5%) on the hardness
is greatest and that of the Si is minor. At the same time, from the
analysis of Table 5, one can observe that the influence of the Mn
(P = 61.1%) on the impact toughness is greatest and that of the
Cu is minor. The averaged values of the hardness and the impact
toughness for each factor (Cr, Si, Mn and Cu) at different levels

Table 4
Variance analysis for hardness test

Source of variance Deviations Degrees of
freedom

Variances P (%)

Cr 47.16 2 23.58 61.5
Si 3.07 2 1.53 4.0
Mn 13.96 2 6.98 18.2
Cu 12.46 2 6.23 16.3
Total 76.65 8 – 100

Table 5
Variance analysis for impact toughness test

Source of variance Deviations Degrees of
freedom

Variances P (%)

Cr 34.67 2 17.34 26.3
Si 14 2 7 10.6
Mn 80.67 2 40.34 61.1
Cu 2.67 2 1.34 2.0
Total 132.01 8 – 100
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