

Journal of Alloys and Compounds 468 (2009) 217-221

Journal of ALLOYS AND COMPOUNDS

www.elsevier.com/locate/jallcom

Synthesis reactions for Ti₃AlC₂ through pulse discharge sintering TiH₂/Al/C powder mixture

Yong Zou^{a,b}, Zheng Ming Sun^{a,*}, Hitoshi Hashimoto^a, Lin Cheng^b

^a Materials Research Institute for Sustainable Development, National Institute of Advanced Industrial Science and Technology (AIST), Nagoya 463-8560, Japan

^b Institute of Thermal Science and Technology, Shandong University, Jinan 250061, PR China

Received 14 December 2007; received in revised form 12 January 2008; accepted 14 January 2008 Available online 4 March 2008

Abstract

Ternary compound Ti_3AlC_2 was synthesized through pulse discharge sintering (PDS) the powder mixture of $TiH_2/Al/C$ without preliminary dehydrogenation. The synthesis mechanism of Ti_3AlC_2 was revealed to be completed via the reactions among the intermediate phases of Ti_3Al , $TiAl_3$, $TiAl_3$, $TiAl_7$, TiC and Ti_2AlC , as well as the starting reactants. In comparison with the materials synthesized from $TiH_2/Al/TiC$ or Ti/Al/C powder mixtures, more impurity phases were found in the synthesized Ti_3AlC_2 . Analysis of the sintering curves as well as the intermediate phase formation during the reactive sintering process revealed that incomplete dehydrogenation of TiH_2 postponed the formation of intermediate phases, which in turn resulted in final products with more impurity phases.

© 2008 Elsevier B.V. All rights reserved.

Keywords: Ti₃AlC₂; Pulse discharge sintering (PDS); Synthesis; TiH₂; Dehydrogenation

1. Introduction

Titanium aluminum carbide (Ti₃AlC₂) is a novel material which belongs to the so-called "312" ternary carbides material group (i.e. Ti₃SiC₂, Ti₃AlC₂, Ti₃GeC₂) [1–6]. Similar to Ti₃SiC₂, Ti₃AlC₂ is a remarkable material that combines many of the best attributes of both metals and ceramics, such as low density (4.25 g/cm³), high modulus, high strength at high temperatures, readily machinable, non-susceptibility to thermal shock, good oxidation resistance, high electrical conductivity [2–5]. Its Young's modulus is about 297 GPa and shear modulus is about 124 GPa [2]. It has high compressive strength at both room and high temperatures, with its failure mode below 1000 °C being by shear fracture, while above 1050 °C the deformation is ductile [3]. Meanwhile, Ti₃AlC₂ has excellent oxidation resistance by forming adhesive continuous Al₂O₃ layer on Ti₃AlC₂ surface at higher temperature [3].

The synthesis of Ti_3AlC_2 was first reported in 1994 by Pietzka and Schuster through sintering cold-compacted powder mix-

0925-8388/\$ – see front matter © 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.jallcom.2008.01.062 tures of titanium, TiAl, Al₄C₃ and carbon at 1300 °C in H₂ atmosphere for 20 h [7]. However, the purity and relative density were not reported because this work emphasized the phase equilibrium in the ternary system. In 2000, Tzenov and Barsoum reported that polycrystalline bulk samples of Ti₃AlC₂ have been fabricated by reactively hot isostatic pressing (HIP) a mixture of titanium, graphite and Al₄C₃ powders at a pressure of 70 MPa and temperature of 1400 °C for 16 h [2]. This is believed to be the first synthesis of fully dense bulk Ti₃AlC₂. In recent years, hot-pressing (HP) [3-5,8,9], self-propagating high temperature synthesis (SHS) [10-12] and pulse discharge sintering (PDS) [5,6,13,14] were employed to synthesize Ti₃AlC₂. In these processes, it is noted that most sintering processes employed metallic Ti powder as a starting material. The report of TiH₂ powder as a reactant is limited [14]. TiH₂ powder is the intermediate product during the fabrication processes for crushed metallic Ti powder, so that it is lower in cost than metallic Ti powder. The market price of TiH₂ powder is about half of metallic Ti powder with equivalent particle size. Therefore, to bring this fascinating ternary compound closer to application with lower cost, the synthesis of Ti₃AlC₂ from TiH₂ powder is a practical attempt. In general, however, when employing TiH₂ powder as the reactant for synthesizing MAX phases,

^{*} Corresponding author. Tel.: +81 52 7367483; fax: +81 52 7367301. *E-mail address:* z.m.sun@aist.go.jp (Z.M. Sun).

the long annealing time was believed to be necessary for preliminarily removing hydrogen in TiH₂ [15,16]. For example, it is reported that the powder mixture containing TiH₂ were annealed at 900 °C for 6 h to remove hydrogen prior to powder blending for synthesizing Ti₃SiC₂ [15]. In our previous study, single-phase dense Ti₃AlC₂ was rapidly synthesized by PDS of the powder mixture of TiH₂/Al/TiC without preliminary dehydrogenation [14]. The dehydrogenation and synthesis reactions were successfully incorporated in a single run of reactive sintering process for Ti₃AlC₂ synthesis. However, the synthesis of Ti₃AlC₂ using powder mixture of TiH₂/Al/C at even lower cost has never been reported. One possible difficulty for using this reaction system is that the whole Ti in Ti₃AlC₂ needs to be provided from TiH2 (in the TiH2/Al/TiC system, two third of Ti was contributed from TiC). This requires more TiH₂ as reactant than that of TiH₂/Al/TiC, consequently dehydrogenation becomes more important during the synthesis process. The objectives of the present work are to explore the possibility of synthesizing Ti₃AlC₂ by PDS process from TiH₂/Al/C powder mixture without preliminary dehydrogenation, and to understand the mechanism of the Ti_3AlC_2 formation.

2. Experimental procedure

Starting powders (all from Kojundo Chemical Lab. Saitama, Japan) of TiH₂ (-45 µm, 99%), Al (-10 µm, 99.9%), and C (5 µm, 99%), were used in this study. The powders were mixed in molar ratio of TiH₂: Al:C = 3:1.1:1.8 (Ti:Al:C = 3:1.1:1.8). This slightly off-stoichiometric composition was selected according to the literature and our previous work [2,3,17], by which single-phase Ti₃AlC₂ was synthesized. These powders were mixed in a Turbula shaker mixer in Ar atmosphere for 24 h. The powder mixture was filled in a graphite mold (20 mm in diameter) and sintered in vacuum by using PDS technique (PAS-V, Sodick Co. Ltd.). The sintering temperature was monitored and controlled through an infrared camera. The heating rate was controlled at 50 °C/min, and the sintering temperature was selected in the range of 900-1500 °C and held at these temperatures for 0-60 min. The powder compact was kept under a constant axial pressure of 50 MPa during sintering. After sintering, the samples were ground to remove surface layer for 1 mm in order to eliminate the carbon effect. Then the samples were analyzed by X-ray diffractometry (XRD) with Cu Ka radiation at 30 kV and 40 mA to identify the phase constitution. In order to avoid the effect of preferred orientation, powder samples were taken by drilling into the bulk of the samples for analysis of phase contents by XRD. The microstructure of the synthesized samples were observed and analyzed by using scanning electron microscopy (SEM) equipped with an energy-dispersive spectroscopy (EDS) system. For the SEM observation, the samples were mechanically polished and etched in a solution of H₂O:HNO₃:HF (2:1:1).

3. Experimental results

3.1. X-ray diffraction (XRD)

Fig. 1 shows the XRD patterns of the samples sintered in the temperature range of 1250-1500 °C for 20 min. After sintering at 1250 °C for 20 min, three phases were confirmed, i.e. Ti₃AlC₂, Ti₂AlC and TiC phases. This indicates the formation of Ti₃AlC₂ at this temperature, although the dominating phase is Ti₂AlC at this temperature. With an increase in sintering temperature, the relative intensity of Ti₂AlC and TiC decreased gradually. When the sample was sintered at 1450 °C for 20 min, the intensity of Ti₃AlC₂ dominated in the pattern. However, when the sinter-

Fig. 1. X-ray diffraction patterns of the $TiH_2/Al/C$ powder compacts sintered at various temperatures for 20 min.

ing temperature was increased to $1500 \,^{\circ}$ C, the relative intensity of Ti₃AlC₂ in the XRD pattern decreased considerably. This indicates that the Ti₃AlC₂ is not stable above $1450 \,^{\circ}$ C.

Fig. 2 shows the XRD patterns of the samples sintered in the temperature range of 1300-1450 °C for 60 min. These results showed that extending the sintering time at different temperatures did not improve the content of Ti₃AlC₂ obviously. The relative intensities of Ti₃AlC₂ main peaks are even lower than those sintered for 20 min at 1450 °C. This might be attributed to the poor thermal stability of Ti₃AlC₂ at this temperature. In other words, the Ti₃AlC₂ synthesized at this temperate decomposed with an increase in the soaking time.

3.2. Content of Ti_3AlC_2

The contents of the constituent phases of Ti_3AlC_2 , Ti_2AlC and TiC in the synthesized products can be estimated from the integrated XRD peak intensities according to the following equations [18]:

$$W_{\rm a} = \frac{I_{\rm a}}{I_{\rm a} + 0.220I_{\rm b} + 0.084I_{\rm c}} \tag{1}$$

$$W_{\rm b} = \frac{I_{\rm b}}{4.545I_{\rm a} + I_{\rm b} + 0.382I_{\rm c}} \tag{2}$$

Download English Version:

https://daneshyari.com/en/article/1623678

Download Persian Version:

https://daneshyari.com/article/1623678

Daneshyari.com