

Journal of Alloys and Compounds 460 (2008) 409-413

Journal of ALLOYS AND COMPOUNDS

www.elsevier.com/locate/jallcom

Glass-forming ability and crystallization behavior of some binary and ternary Ni-based glassy alloys

Dmitri V. Louzguine-Luzgin^{a,*}, Larissa V. Louzguina-Luzgina^b, Guoqiang Xie^a, Song Li^a, Wei Zhang^a, Akihisa Inoue^a

^a Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan

^b Research and Development Project, SORST, Japan Science and Technology Agency, Sendai 985-8577, Japan

Received 21 May 2007; received in revised form 26 June 2007; accepted 26 June 2007 Available online 29 June 2007

Abstract

The purpose of the current paper is to study the influence of Ti, V, Nb, Al, Sn and Pd additions on the glass-forming ability, formation of a supercooled liquid region and a devitrification process of some Ni–Zr glassy alloys as well as to compare the results with those obtained for similar Cu-based alloys studied earlier. The Ni-based glassy alloys were investigated by using X-ray diffraction, differential scanning and isothermal calorimetries. Although the studied Ni-based alloys showed high values of the reduced glass-transition temperature of about 0.6, their glass-forming ability is quite low. This fact may be explained by low stability of the supercooled liquid against crystallization and formation of the equilibrium intermetallic compounds with a high growth rate compared to those observed in similar Cu-based alloys studied earlier. Relatively low thermal conductivity of Ni-based alloys is also found to be another factor limiting their glass-forming ability. © 2007 Elsevier B.V. All rights reserved.

© 2007 Elsevier D. v. All rights reserved.

Keywords: Glassy alloy; Glass-forming ability; Supercooled liquid; Devitrification

1. Introduction

At present bulk glassy alloys (bulk metallic glasses) attract significant attention of the scientists working in the filed of materials science [1] due to their promising physical [2] and functional [1–3] properties. Recently, bulk glass formation was achieved in Ni–Nb–Ti–Zr [4], Ni–Nb–Ti [5] and a number of similar alloys, which belong to LTM–ETM (LTM-late transition metals, ETM-early transition metals) group of alloys. Ni-based glassy alloys were also formed in Ni–Zr–Ti–(Si,Sn) [6,7], Ni–Nb–Ti–Hf [8,9], Ni–Nb–Sn [10] and some other systems. Ni₅₉Zr₁₆Ti₁₃Si₃Sn₂Nb₇ bulk glassy alloy showed a significant plastic deformation of 6.5% to failure [11]. However, it may contain nanoparticles embedded in the glassy matrix which are not detectable by an X-ray diffraction (XRD) technique. The devitrification behavior of Ni–Nb–Ti [12], Ni–Nb–Ti–Zr and Ni–Nb–Ti–Zr–Pt [13] glassy alloys has been studied recently. An addition of Ni to Cu-based alloys stabilized oC68 $(Ni,Cu)_{10}Zr_7$ phase [14,15] while the isomorphous $Ni_{10}Zr_7$ phase formed primarily in the Ni–Zr–Ti alloy on devitrification [16].

In the current paper, we study the influence of Al, Ti, V, Sn and Nb additions on the glass-forming ability, the supercooled liquid region and the devitrification behavior of Ni–Zr glassy alloys. Slightly off-eutectic Ni₆₅Zr₃₅ alloy has been chosen by analogy with recently studied Cu–Zr bulk glassy alloys [17–20] due to close similarity of Ni–Zr and Cu–Zr phase diagrams [21]. Al, V, Sn, Ti and Nb have a negative mixing enthalpy in liquid with Ni [22]. They also form intermediate compounds. These factors favor glass-formation. Compositions of Ni₆₀Zr₃₀Ti₁₀ and Ni₆₀Zr₃₀V₁₀ alloys were chosen by analogy with the recently studied Cu₆₀Zr₃₀Ti₁₀ alloy [17] while Ni₆₄Zr₂₆Nb₁₀ was created by analogy with Ni–Nb–Ti and Ni–Nb–Zr alloys [5].

2. Experimental procedure

The ingots of Ni-based alloys (all alloy compositions are given in nominal at.%) were prepared by arc-melting mixtures of pure elements with 99.9 mass% purity, except for Zr and Ti, which had 99.8 mass% purity, in an argon atmosphere. From these ingots, ribbon samples of about $20-25 \,\mu\text{m}$ in thickness and

^{*} Corresponding author. Tel.: +81 22 215 2592; fax: +81 22 215 2381. *E-mail address*: dml@imr.tohoku.ac.jp (D.V. Louzguine-Luzgin).

^{0925-8388/\$ -} see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.jallcom.2007.06.076

Fig. 1. DSC traces of the studied alloys.

l mm in width were prepared by rapid solidification of the melt on a single copper roller at a tangential velocity of 42 m/s. The structure of the samples was examined by X-ray diffractometry with monochromatic Cu K α radiation. The phase transformations were studied by differential scanning calorimetry (DSC) at a heating rate of 0.67 K/s and differential isothermal calorimetry. During isothermal calorimetry the samples were heated up to the testing temperature at the highest possible heating rate of 1.67 K/s. The temperature and enthalpy for the DSC were calibrated within ± 0.2 K and ± 0.1 J/g using the melting of In as a standard. Differential thermal analysis (DTA) has been carried out on cooling at 0.067 K/s from the melt.

3. Results and discussion

Compositions of the studied Ni-based alloys are listed in Table 1. DSC traces of the studied alloys are shown in Fig. 1. The data on glass transition temperature (T_g) (which actually corresponds to the onset of the glass-transition region), temperature of crystallization (T_x) , supercooled liquid region (ΔT_x) and enthalpy of phase transformation ΔH_1 and ΔH_2 are presented in Table 1.

Thus, most of the studied alloys show double-stage transformation first of which is related to the primary formation

Table 1					
Thermal	analysis o	data for	the st	udied	alloys

T-1.1. 1

Alloy	$T_{\rm g}~({\rm K})$	$T_{x}(\mathbf{K})$	ΔT_{x} (K)	ΔH_1 (J/g)	$\Delta H_2 (J/g)$
Ni ₆₅ Zr ₃₅	827	863	36	59.9	1.3
Ni ₆₀ Zr ₃₀ Ti ₁₀	793	806	13	45.8	2.2
Ni ₆₀ Zr ₃₀ V ₁₀	811	851	40	28.4	6.0
Ni ₆₄ Zr ₂₆ Nb ₁₀	856	886	30	68.4	3.1
Ni55Zr30Ti10Pd5	781	811	30	42.8	6.1
(Ni _{0.65} Zr _{0.35}) ₉₅ Al ₅	829	871	42	51.3	-
$(Ni_{0.65}Zr_{0.35})_{95}Sn_5$	837	867	30	88.6	7.9

of the equilibrium oC68 Ni₁₀Zr₇ compound or its-based solid solutions observed in the hypereutectic Ni₆₀Zr₃₀Ti₁₀ and Ni₅₅Zr₃₀Ti₁₀Pd₅ alloys (Fig. 2) (FCC phase is formed in Ni₆₀Zr₃₀V₁₀ alloy (Fig. 2)) or eutectic-type crystallization of the glassy phase observed in nearly eutectic Ni₆₅Zr₃₅ (Fig. 3), (Ni_{0.65}Zr_{0.35})₉₅Al₅ (Fig. 4) and (Ni_{0.65}Zr_{0.35})₉₅Sn₅ alloys. The second stage in the nearly eutectic alloys is rather related to subsequent crystal growth (Figs. 3 and 4). FCC phase in the Ni₆₀Zr₃₀V₁₀ alloy exhibits a steady-state nucleation and diffusion-controlled growth [23] as follows from the Avrami analysis (Fig. 5).

From the binary Ni–Zr phase diagram one can see that Ni₆₅Zr₃₅ alloy has a liquidus temperature of about 1100 C (1373 K) which gives quite a high so-called reduced glass-transition T_g/T_1 temperature [24] of 0.60. This value is usually considered as high enough to enable bulk glass formation as observed in Cu- and Zr-based alloys [22]. Nevertheless,

Fig. 2. XRD patterns of (a) $Ni_{60}Zr_{30}Ti_{10}$ and (b) $Ni_{60}Zr_{30}V_{10}$ alloys in the annealed state.

Download English Version:

https://daneshyari.com/en/article/1623915

Download Persian Version:

https://daneshyari.com/article/1623915

Daneshyari.com