

Journal of Alloys and Compounds 458 (2008) 123-129

Journal of ALLOYS AND COMPOUNDS

www.elsevier.com/locate/jallcom

Syntheses and single-crystal structures of La₃AgSnS₇, Ln₃M_xMS₇ (Ln = La, Ho, Er; M = Ge, Sn; $1/4 \le x \le 1/2$)

Hui-Yi Zeng*, Fa-Kun Zheng, Guo-Cong Guo*, Jin-Shun Huang

State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China

Received 18 January 2007; received in revised form 21 March 2007; accepted 28 March 2007 Available online 5 April 2007

Abstract

In our investigation of non-centrosymmetric rare earth sulfides in the La₃AgSnS₇/KBr, LaAlGeS₅/NaBr, HoAlGeS₅/KBr, ErAlGeS₅/NaBr, Er₃AgGeS₇/KBr and La₃NaSnS₇/NaBr systems, five compounds belonging to the R₆B₂C₂Q₁₄ family have been obtained. These compounds crystallize in the *P*6₃ space group, and the crystal data are as follows—La₃AgSnS₇: a = 10.3780(15) Å, c = 5.9900(12) Å, Z = 2; La₃Ge_{0.25}GeS₇: a = 10.2970(15) Å, c = 5.8120(12) Å, Z = 2; Ho₃Ge_{0.272(10)}GeS₇: a = 9.6480(14) Å, c = 5.7920(12) Å, Z = 2; Er₃Ge_{0.330(10)}GeS₇: a = 9.5930(14) Å, c = 5.8490(12) Å, Z = 2; La₃Sn_{0.25}SnS₇: a = 10.2770(15) Å, c = 6.0030(12) Å, Z = 2. Single-crystal analysis indicated that the crystal structures consist of three types of building block: LnS_n, MS₄, and AgS₃ (for La₃AgSnS₇) or MS₆ units (for Ln₃M_xMS₇, Ln = La, Ho, Er; M = Ge, Sn; $1/4 \le x \le 1/2$) are deficient compounds with the B sites occupied partly by M(II), and/or M(IV).

© 2007 Elsevier B.V. All rights reserved.

Keywords: Non-centrosymmetric; Rare earth; Sulfide; Crystal structure; Deficient

1. Introduction

Second-order nonlinear optical (NLO) materials have played a key role in areas such as laser frequency conversion and optical parameter oscillators [1,2]. Acentric chalcogenides are particularly interesting, as they are potential second-order NLO materials for use in the IR region. A number of chalcogenides adopting a non-centrosymmetric space group have been synthesized, and some IR NLO chalcogenide materials, such as AgGaS₂ [2,3], LiInS₂ [4], LiGaQ₂ (Q = S, Se, Te) [5] have been recognized.

A large family of rare earth chalcogenides with the general formula $R_6B_2C_2Q_{14}$ (R = rare earth, B = 6-coordinated element, C = 4-coordinated element, Q = S, Se) [6–28] crystallize in the hexagonal system with space group $P6_3$, which are of great interest and deserve further investigation in the search for new non-centrosymmetric compounds as potential IR NLO materials [15–17]. In many cases, the B sites in the saturated formu-

las R₆B(I)₂C(IV)₂Q₁₄, R₆B(II)₂C(III)₂Q₁₄ are occupied partly by elements of a higher oxidation state, the charge/occupancy balance leads to the deficient compounds with the compositions R₆(B_{2m} \Box_{2-2m})C₂Q₁₄ (\Box = vacancy) with 2m = 1/2, 2/3, 1 and 4/3 [6]. Nd₆Ge₃S₁₄, La₆MnSi₂S₁₄, Ln₆In_{2/3}Si₂S₁₄, La₆Sn_{1/2}Si₂S₁₄ and Dy₆Ge_{2.5}S₁₄ are typical deficient compounds [6].

In our investigation of non-centrosymmetric rare earth sulfides La₃AgSnS₇, La₃NaSnS₇ (presumed compound), Er₃AgGeS₇ (presumed compound) [29], and LnAlGeS₅ (presumed compounds) (Ln = La, Ho, Er) (LnAlGeS₅, analogues of the acentric LaBGeO₅ [30]), five compounds belonging to the R₆B₂C₂Q₁₄ family have been obtained. Here, we report the syntheses, and the systematic structure investigation of La₃AgSnS₇ (=La₆Ag₂Sn₂S₁₄) and four deficient compounds: Ln₃M_xMS₇ (=Ln₆(M_{2x} \Box_{2-2x})M₂S₁₄) (Ln = La, Ho, Er; M = Ge, Sn; 1/4 ≤ x ≤ 1/2; \Box = vacancy).

2. Synthesis

All starting materials were used as received: Al (99.999%), Ge (99.999%), Ho (99.9%), S (99.999%), Ag₂S (99.9%), Er₂S₃

^{*} Corresponding authors. Tel.: +86 591 83705054; fax: +86 591 83714946. *E-mail addresses:* zhy@fjirsm.ac.cn (H.-Y. Zeng), gcguo@fjirsm.ac.cn (G.-C. Guo).

^{0925-8388/\$ –} see front matter © 2007 Elsevier B.V. All rights reserved. doi:10.1016/j.jallcom.2007.03.136

Table 1
Reaction condition and unit cell (in the hexagonal system) for La ₃ AgSnS ₇ , Ln ₃ M _x MS ₇ (Ln = La, Ho, Er; M = Ge, Sn; $1/4 \le x \le 1/2$)

Starting materials (mmol)	Heating profile (precursor preparation)	Precursor	Flux	Heating profile (crystal growth)	Crystal	Unit cell		Compound
						a (Å)	<i>c</i> (Å)	
La ₂ S ₃ :Ag ₂ S:SnS ₂ 0.360:0.121:0.241	30–750 °C/72 h 750–750 °C/24 h 750–1000 °C/10 h 1000–1000 °C/240 h Power switched off	La3AgSnS7	0.80 g KBr	40–850 °C/54 h 850–850 °C/360 h 850–600 °C/166.67 h Power switched off	1	10.3780(15)	5.9900(12)	La ₃ AgSnS ₇
La ₂ S ₃ :Al:Ge:S 0.278:0.556:0.556:1.946	30–700 °C/37.22 h 700–700 °C/24 h 700–1000 °C/15 h 1000–1000 °C/240 h 1000–640 °C/180 h Power switched off	LaAlGeS5	0.80 g NaBr	40–850 °C/54 h 850–850 °C/240 h 850–700 °C/100 h Power switched off	2	10.2970(15)	5.8120(12)	La3GexGeS7
Ho:Ge:Al:S 0.556:0.556:0.556:2.780	40–360 °C/8 h 360–500 °C/9.33 h 500–500 °C/50 h 500–850 °C/23.33 h 850–850 °C/240 h 850–450 °C/133.33 h Power switched off	HoAlGeS₅	0.70 g KBr	30–900 °C/14.5 h 900–900 °C/240 h 900–650 °C/166.67 h Power switched off	3	9.6480(14)	5.7920(12)	Ho ₃ Ge _x GeS ₇
Er ₂ S ₃ :Al:Ge:S 0.278:0.556:0.556:1.946	30–700 °C/37.22 h 700–700 °C/24 h 700–1000 °C/15 h 1000–1000 °C/240 h 1000–640 °C/180 h Power switched off	ErAlGeS5	0.80 g NaBr	40–850 °C/54 h 850–850 °C/240 h 850–700 °C/100 h Power switched off	4	9.5970(14)	5.8220(12)	Er ₃ Ge _x GeS ₇
Er ₂ S ₃ :Ag:Ge:S 0.374:0.249:0.249:0.624	20–500 °C/25 h 500–500 °C/24 h 500–700 °C/10 h 700–700 °C/30 h 700–800 °C/25 h 800–800 °C/120 h Power switched off	Er3AgGeS7	0.80 g KBr	40– 850 °C/13.5 h 850–850 °C/240 h 850–650 °C/133.33 h Power switched off	5	9.5930(14)	5.8490(12)	Er ₃ Ge _x GeS ₇
La ₂ S ₃ :Na ₂ S:SnS ₂ 0.768:0.256:0.512	30–750 °C/144 h 750–750 °C/80 h 750–1000 °C/250 h 1000–1000 °C/144 h 1000–380 °C/216 h Power switched off	La3NaSnS7	0.80 g NaBr	30–830 °C/64 h 830–830 °C/212 h 830–700 °C/65 h Power switched off	6	10.2770(15)	6.0030(12)	La ₃ Sn _x SnS ₇

Download English Version:

https://daneshyari.com/en/article/1624386

Download Persian Version:

https://daneshyari.com/article/1624386

Daneshyari.com