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Multipoles in δ-Pu
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Abstract

We propose a multipole scenario to understand the absence of magnetism in δ-Pu on the basis of a microscopic model constructed from a j–j
coupling scheme. In order to determine the multipole state, we employ a concept of the optimization of multipole susceptibility. By using an
exact diagonalization technique for 4-site fcc lattice, we depict the phase diagram, including the states characterized by quadrupole and octupole
fluctuations. We discuss the region in our phase diagram with possible relevance to the actual situation for δ-Pu.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Recently plutonium and its related compounds have attracted
renewed attention in the research field of strongly correlated
electron systems of condensed matter physics. It has been trig-
gered by the discovery of superconductivity in PuCoGa5 with
high superconducting transition temperature Tc = 18.5 K [1].
This material is considered to be a heavy-fermion superconduc-
tor, since the coefficient of electronic specific heat γ has been
estimated as γ = 77 mJ/mol K2, which is moderately enhanced
relative to that for normal metals. In PuRhGa5, superconductiv-
ity has been also found [2]. Although the value of Tc = 8.7 K
is lower than that of PuCoGa5, it is still high enough in com-
parison with other f-electron superconductors. Recently, high
quality single crystal PuRhGa5 has been synthesized [3] and the
Ga-NQR measurement has been performed to reveal that d-wave
superconductivity is realized in PuRhGa5 [4]. This is consistent
with the results of PuCoGa5 from the Ga-NMR measurement
[5] and the μSR measurement of the temperature dependence
of penetration depth [6].

Another issue is the absence of magnetism in δ-Pu, which
is one of solid phases of Pu. It has been widely recognized that
actinide metal crystallizes in large varieties of structures, in com-
parison with other elements in the periodic table. In particular, Pu
metal takes a remarkably anomalous position. The thermal ex-
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pansion coefficient of Pu is large compared with other actinides,
and the coefficient of δ-Pu is negative. Namely, in δ-Pu, the vol-
ume is decreased with increasing temperature. Furthermore, the
density is smaller than that of the liquid phase. Such peculiar
behavior has been basically understood from the competition
between itineracy and localization of 5f electrons of Pu. From
this viewpoint, for the understanding of negative thermal expan-
sion coefficient, the localization tendency of 5f electron should
be the strongest in δ-Pu, which requires the magnetism of δ-Pu.
However, from the recent μSR measurement at low tempera-
tures in δ-Pu which is stabilized by the doping of small amount
of Ga, the limit of the magnetic moment has been found to be
less than 10−3μB [7]. This result does not support the magnetic
phase. Note also that in neutron scattering measurements, no
magnetic moment has been detected thus far [8]. The competi-
tion between electron itineracy and localization is closely related
to the emergence of magnetism, but it is difficult to understand
why magnetism does not appear when localization tendency be-
comes strong. This seems to be a basic issue in condensed matter
physics.

In order to attack such a problem, it is necessary to pro-
mote a couple of theoretical researches in parallel with differ-
ent viewpoints. One is the analysis of the energy-band structure
and Fermi surfaces by using the band-structure calculation tech-
niques, in order to obtain correct information about the electronic
properties around the Fermi energy. Another is the research from
a viewpoint of strongly correlated electron systems. Namely, on
the basis of a simplified electron model which reproduces the
energy-band structure around the Fermi energy, we attempt to
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include the effect of electron correlation. These two types of
researches are complementary to each other to make significant
progress in our understandings on novel magnetism and exotic
superconductivity of actinide compounds. However, theoretical
activities on Pu were limited in the sense that band-structure
calculations and related techniques have been the main tools for
the research of Pu and related materials. It is still important to
improve the band-structure calculations, but we should make
more effort to consider the problem also from the viewpoint of
strongly correlated electron systems.

In this paper, we report our first trial to understand the absence
of magnetism in δ-Pu by analyzing a multiorbital Hubbard-like
model on an fcc lattice composed of Pu3+ ions on the basis of a
j–j coupling scheme. When we depict the phase diagram for the
multipole state on the plane of the Hund’s rule interaction and
the crystalline electric field (CEF) potential, the non-magnetic
quadrupole state is found to exist next to the magnetic phase.
We discuss possible relevance of the present result to the actual
situation in δ-Pu.

2. Model Hamiltonian

First we briefly discuss the valence of Pu in the δ-phase.
The LDA+U calculation suggested 5f5 electron state [9].
The analysis of the mixed-level model also suggested 5f5

configuration [10], but four electrons are in a localized multiple
hybridizing with valence states, while one 5f electron forms a
delocalized band state [11]. On the other hand, in the calculation
of the LDA+U with spin–orbit coupling λ, δ-Pu phase had a non-
magnetic ground state with Pu ion in f6 configuration [12]. The
LDA+U in combination with the mean-field theory indicated
n = 5.44 [13], where n denotes the average f-electron number
per site. It is difficult to conclude the exact valence of Pu, but the
tendency of magnetism should be strong for n = 5 in compar-
ison with the case of n = 6. It is considered to be a challenging
problem to explain the absence of magnetism even for n = 5.
Thus, in this paper, we consider the model for Pu3+ ions in an fcc
lattice.

Next let us discuss the picture to describe the 5f-electron
state. For the purpose, it is useful to refer the result on PuIn3,
which is a paramagnet with enhanced specific heat coefficient
γ ∼ 100 mJ/mol K2. Recently, Haga et al. have grown single
crystal of PuIn3 and succeeded in the observation of de Haas-
van Alphen (dHvA) signals [14]. The detected dHvA branch
corresponds to a closed electron Fermi surface in good agree-
ment with the theoretical result of the relativistic band-structure
calculation on the basis of the itinerant 5f-electron states. Then,
we take the itinerant picture for 5f electrons in this paper, but
we do not intend to exclude the localized picture, since our pur-
pose here is to provide an alternative scenario for the absence
of magnetism in δ-Pu. The actual situation should be located in
the middle of itinerant and localized pictures and there exist two
routes to arrive at the actual situation from itinerant and local-
ized sides, depending on the description of the 5f-electron states.
We believe that the approach from the itinerant picture is com-
plementary to previous scenarios on the basis of the localized
picture for 5f electrons.

There are two typical approaches to consider fn-electron state,
LS and j–j coupling schemes. Since the fn-electron state in the
LS coupling scheme is continuously connected to that in the j–j
coupling scheme [15,16], we can take one of them depending
on the nature of the problem. In order to consider the prob-
lem from the itinerant side, we prefer to use the j–j coupling
scheme [17]. Since individual f-electron states are first defined,
we can include many-body effects using standard quantum-field
theoretical techniques. In contrast, in the LS coupling scheme
we cannot use such standard techniques, since Wick’s theorem
does not hold. Of course, when we consider the problem from
the localized picture, the LS coupling scheme is useful.

By following the method to construct the f-electron Hamil-
tonian H on the basis of the j–j coupling scheme in Ref. [17],
we obtain H as

H =
∑

i,a,μ,ν

ta
μνf

†
iμfi+aν +

∑
i,μ,ν

Bμνf
†
iμfiν

+ 1

2

∑
i,μ,ν,μ′,ν′

Iμ,ν;ν′,μ′f †
iμf

†
iνfiν′fiμ′ , (1)

where fiμ is the annihilation operator for f electron with the
z-component μ of total angular momentum j = 5/2 at a site
i and ta

μν is the overlap integral between the μ- and ν-states
connected by a vector a. For simplicity, here we consider only
the (ffσ) bond and the hopping amplitude t is defined by t =
3(ffσ)/56. The explicit expressions of ta

μν for arbitrary direction
are shown in Ref. [17]. The bandwidth W is given by W = (50 +
2
√

145)t ≈ 74t.
The second term denotes the one-electron CEF potential part.

For the fcc lattice of Pu3+ with cubic symmetry, we obtain
�7 doublet and �8 quartet. Then, we introduce the level split-
ting Δ between �7 and �8 states. By using Δ, we express Bμν

as B±5/2,±5/2 = Δ/6, B±3/2,±3/2 = −Δ/2, B±1/2,±1/2=Δ/3,
B±5/2,∓3/2 = B∓3/2,±5/2 = √

5Δ/6, and zero for other μ and
ν. Note that for n = 5, the ground state is �8 for Δ > 0, while
�7 for Δ < 0 in the j–j coupling scheme, since we simply ac-
commodate electrons in the one-electron levels.

The last term in Eq. (1) indicates the Coulomb interaction part
and I is the Coulomb integral expressed by using three Racah
parameters, E0, E1, and E2 [17]. Among the Racah parameters,
E2 plays a key role of the Hund’s rule interaction, which is
important to determine the electron state.

3. Multipole susceptibility

In order to clarify the magnetic properties at low tempera-
tures, we usually discuss the magnetic susceptibility, but in more
general, we should consider the susceptibility of multipole mo-
ments such as dipole, quadrupole, and octupole. The multipole
operator is given in the second-quantized form as

Xiγ =
∑
μ,ν

(Xγ )μνf
†
iμfiν, (2)

where X denotes the symbol of multipole with the symmetry of
�γ and γ indicates a set of indices for the irreducible represen-
tation. In this paper, we consider the multipoles up to rank 3.
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