

Journal of Alloys and Compounds 438 (2007) L12-L15

www.elsevier.com/locate/jallcom

Letter

The crystal structure and magnetic properties of the $GdCr_xAl_{12-x}$ (x = 3.5 and 4.0) intermetallics

Yu. Verbovytsky a,b, K. Łatka b,*, A.W. Pacyna c, K. Tomala b

a Department of Inorganic Chemistry, Ivan Franko National University of Lviv, Kyryla and Mefodiya 6, 79005 Lviv, Ukraine
b Marian Smoluchowski Institute of Physics, Jagiellonian University, Reymonta 4, 30-059 Kraków, Poland
c Henryk Niewodniczański Institute of Nuclear Physics, Polish Academy of Sciences, Radzikowskiego 152, 31-342 Kraków, Poland

Received 21 July 2006; received in revised form 14 August 2006; accepted 15 August 2006 Available online 18 September 2006

Abstract

The crystal structure of the $GdCr_xAl_{12-x}$ (with x=3.5 and 4.0) intermetallic compound was determined by X-ray powder diffraction using the Rietveld method. The investigated compound crystallizes with $ThMn_{12}$ structure type (space group I4/mmm, Pearson symbol tI26). Magnetic measurements carried out for the title compound point to the antiferromagnetic–paramagnetic transition observed at $T_N = 6.50$ and 6.75 K for compositions with x=3.5 and 4, respectively. © 2006 Elsevier B.V. All rights reserved.

Keywords: Intermetallics; Crystal structure; X-ray diffraction; Magnetic properties

1. Introduction

Among the R–Cr–Al (R = Sc, Y and rare earths) ternary systems the isothermal sections were investigated in the partial or whole concentration region with R = Sc, Y, La, Ce, Gd, Dy, Yb [1–7]. Additionally, other alloys of these systems were investigated for the existence of the isostructural ternary compounds, which belong to the $CeCr_2Al_{20}$, $Ho_6Mo_4Al_{43}$ and $CeMn_4Al_8$ structure types [8–10]. Magnetic properties of some selected intermetallics of these systems were also studied [11,12].

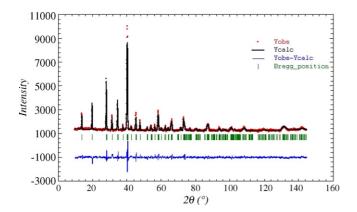
In this paper, we report the results of crystal structure investigations of the $GdCr_xAl_{12-x}$ (with x=3.5 and 4.0) intermetallic compound using the Rietveld method together with the results of magnetic measurements.

2. Experimental details

Samples were prepared by arc-melting of initial components under high purity argon on a water-cooled copper hearth. Starting materials were used in the form of pieces of high purity metals (>99.9 wt.%). The samples were remelted three times for a better homogeneity. Ingots were wrapped with tantalum foil and afterwards sealed in evacuated quartz tubes and annealed at 500 $^{\circ}\text{C}$ for 3 months. After heat treatment, the samples were quenched by submerging the silica tubes in cold water.

The crystal structures of ternary compounds were studied by means of X-ray powder diffraction (Siemens D500 diffractometer, Cu K α -radiation, scanning parameters: 2θ region 10– 145° , step scan 0.05° , counting time per step 10 s). All the crystal structure calculations were performed by means of the Rietveld method using the FullProf programme [13].

The magnetic susceptibility and magnetization of polycrystalline samples were determined by means of SQUID (Quantum Design) magnetometer, a Cahn RG automatic electro-balance and/or ac/dc magnetic measurements with Lake Shore 7225 apparatus in the temperature range from 2 to 300 K.


3. Results and discussion

The structure of the $GdCr_xAl_{12-x}$ (for x=3.5 and 4.0) intermetallic compound annealed at $500\,^{\circ}C$ was refined from X-ray powder diffraction data using the Rietveld method. Pseudo-Voigt profile shape function was used. The background was refined with a polynomial function. The title ternary intermetallic compound crystallizes in tetragonal space group I4/mmm (Pearson symbol tI26), with $ThMn_{12}$ structure type (or $CeMn_4Al_8$ type with x=4.0) [14]. The results of the crystal structure determination for the $GdCr_xAl_{12-x}$ with x=3.5 and x=4.0 are summarized in Table 1. Results of the Rietveld profile refinement of the $GdCr_4Al_8$ X-ray diffraction data are presented in Fig. 1. Projections of the $GdCr_xAl_{12-x}$ structure on the xy plane and coordination polyhedra for the atoms are given in Fig. 2. Interatomic distances and coordination numbers for atoms in the $GdCr_xAl_{12-x}$ are presented in Table 2. These dis-

^{*} Corresponding author. Tel.: +48 12 663 5668; fax: +48 12 633 70 86. E-mail address: uflatka@cyf-kr.edu.pl (K. Łatka).

Table 1 Results of the crystal structure determination of the $GdCr_xAl_{12-x}$ (x = 4.0-3.5) compound

$GdCr_xAl_{12-x}$	x = 3.5	x = 4.0	
Lattice parameters			
a (Å)	8.9900 (6)	8.9683(7)	
c (Å)	5.1229 (4)	5.1252(5)	
$V(\mathring{A}^3)$	414.04 (5)	412.23(6)	
Reliability factors			
$R_{\rm B}~(\%)$	8.77	8.45	
$R_{\rm p}~(\%)$	3.31	3.39	
Atom parameters			
	Gd in 2(a) 0 0 0	Gd in 2(a) 0 0 0	
$B_{\rm iso}({\rm \AA}^2)$	0.68(10)	0.85(8)	
	0.87(3)Cr + $0.13(3)$ Al	Cr in 8(f) 1/4 1/4 1/4	
	in 8(f) 1/4 1/4 1/4		
$B_{\rm iso}$ (Å ²)	0.67(13)	1.05(10)	
	Al1 in 8(i) x 0 0	All in $8(i) \times 00$	
	x = 0.3530(8)	x = 0.3537(8)	
$B_{\rm iso}$ (Å ²)	0.89(18)	0.46(18)	
	Al2 in $8(j) \times 1/2 = 0$	Al2 in $8(j) \times 1/2 = 0$	
	x = 0.2791(8)	x = 0.2795(9)	
$B_{\rm iso} (\mathring{\rm A}^2)$	0.64(18)	0.95(20)	

 $Fig.\ 1.\ Rietveld\ profile\ refinement\ of\ X-ray\ diffraction\ data\ for\ the\ GdCr_4Al_8.$

Table 2 Interatomic distances (δ^*) and coordination numbers (CN) for atoms in the GdCr_xAl_{12-x} intermetallics

x 12 x						
Atoms	δ (Å)	CN	Atoms	δ (Å)	CN	
$GdCr_xAl_{12-x} (x=3.5)$			$GdCr_xAl_{12-x} (x=4.0)$			
Gd		20	Gd		20	
-4A11	3.174		-4Al1	3.172		
-8A12	3.241		-8A12	3.237		
-8M	3.427		−8Cr	3.420		
M		12	Cr		12	
-2Cr	2.561		-2Cr	2.563		
-4A12	2.600		-4A12	2.596		
-4A11	2.748		-4Al1	2.745		
-2Gd	3.427		-2Gd	3.420		
A11		14	A11		14	
-Al1	2.642		-A11	2.624		
-4M	2.748		-4Cr	2.745		
-2A12	2.824		-2A12	2.827		
-2A12	2.836		-2A12	2.829		
-4A11	3.170		-4Al1	3.164		
-Gd	3.174		-Gd	3.172		
Al2		12	A12		12	
-4M	2.600		-4Cr	2.596		
-2A12	2.808		-2A12	2.796		
-2A11	2.824		-2A11	2.827		
-2A11	2.836		-2A11	2.829		
-2Gd	3.241		-2Gd	3.237		
-						

^{*} Standard deviations $\leq 0.001 \text{ Å}$. M = 0.87(3)Cr + 0.13(3)Al.

tances are close to the sum of the atomic radii of the respective atoms.

SQUID magnetic measurements indicate that the $GdCr_xAl_{12-x}$ with x=3.5 orders antiferromagnetically at Néel temperature $T_N=6.50(5)$ K, presenting modified Curie–Weiss behaviour above T_N (Fig. 3a) in the form $\chi_\sigma=\chi_0+C/(T-\Theta_p)$, where χ_0 is a temperature independent factor, C the Curie constant and Θ_p is the paramagnetic Curie temperature. The negative paramagnetic $\Theta_p=-5.9$ K Curie temperatures obtained for this composition of $GdCr_xAl_{12-x}$ compound points to a dominant antiferromagnetic exchange interaction among gadolinium magnetic moments. The effective magnetic moment

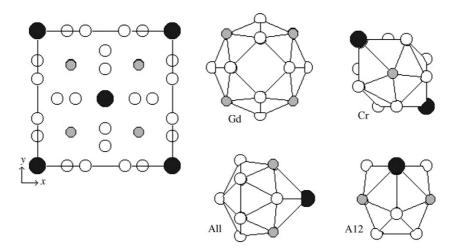


Fig. 2. Projections of the GdCr₄Al₈ structure on the *xy* plane and coordination polyhedra of the atoms. Black circles indicate Gd atoms, grey filled circles are Cr atoms, and Al atoms are marked by white circles.

Download English Version:

https://daneshyari.com/en/article/1626302

Download Persian Version:

https://daneshyari.com/article/1626302

<u>Daneshyari.com</u>