

Journal of Alloys and Compounds 432 (2007) 69-73

www.elsevier.com/locate/jallcom

Reactive flux syntheses, crystal structures and band gaps of $AInS_2$ (A = Rb, Cs)

Hui-Yi Zeng ^{a,*}, Fa-Kun Zheng ^a, Rui-Ping Chen ^a, Zhen-Chao Dong ^{a,b}, Guo-Cong Guo ^{a,*}, Jin-Shun Huang ^a

 ^a State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, PR China
^b Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, PR China

> Received 7 February 2006; received in revised form 11 April 2006; accepted 5 June 2006 Available online 12 July 2006

Abstract

High-quality single crystals of RbInS₂, CsInS₂ were isolated from the halide flux as a major phase of the repeated fusion of CaS and In₂S₃ followed by slow cooling. RbInS₂ and CsInS₂ are practically isostructural with KInS₂. RbInS₂: C2/c, a = 11.071(6) Å, b = 11.068(1) Å, c = 15.610(7) Å, $\beta = 100.36(3)^{\circ}$, V = 1882(2) Å³, Z = 16, $d_x = 3.74$ g/cm³, R = 6.38%, $R_w = 6.42\%$. CsInS₂: C2/c, a = 11.197(3) Å, b = 11.158(3) Å, c = 16.358(4) Å, $\beta = 99.92(2)^{\circ}$, V = 2013(2) Å³, Z = 16, $d_x = 4.12$ g/cm³, R = 5.60%, $R_w = 6.20\%$. The AInS₂ (A = Rb, Cs) structure is characterized by double layers of vertex-sharing [In₄S₁₀] units that each consists of four [InS₄] polyhedra. The charge-balancing alkali-metal cations are stuffed into the channels created by the packing of these anionic [In₄S₁₀] blocks. The optical reflectance measurements show a band gap of 3.3 eV for RbInS₂ and 3.4 eV for CsInS₂, suggesting that both are semiconductors. © 2006 Elsevier B.V. All rights reserved.

Keywords: Flux; Crystal growth; Crystal structure; Band gap

1. Introduction

Materials with transparent windows extending into the far infrared region (10–14 μ m) are becoming more and more important for modern optical and electronic–optical applications [1]. Most ceramic materials that are transparent in visible region contain light elements such as O, and B, and thus have vibrational excitations in the infrared region. The characteristic absorption at low frequencies of chalcogenides renders these materials excellent for long wavelength transmission. Many sulfide materials have transmission windows ranging from 0.5 to 14 μ m [1]. Multinary metal sulfides are optical ceramic materials [2,3] with potential applications. In our effort to search for this type of materials [4,5], single crystals of RbInS₂ and CsInS₂ of high quality were obtained through the traditional flux method [6]. Although the X-ray powder data have been reported in literature

E-mail addresses: zhy@fjirsm.ac.cn (H.-Y. Zeng), gcguo@fjirsm.ac.cn (G.-C. Guo).

[7], showing that RbInS₂, CsInS₂ are isostructural with KInS₂ [8], KInS₂–I [2], KInSe₂ [9] and TlGaSe₂ [10]. Recently, Huang et al. [11] reported the preparation, structures and calculated band gaps of RbInS₂ and RbInSe₂. To our knowledge, due to the lack of high-quality single crystals, the structure of CsInS₂ has not been reported, the physical properties of RbInS₂, CsInS₂ have not been measured by other groups yet. We present here the synthesis, crystal structure and experimental band gaps of RbInS₂, CsInS₂.

2. Synthesis and crystal growth

All starting materials were used as received.

The starting materials of 0.0670 g (0.924 mmol) CaS (99.5%) and 0.3010 g (0.924 mmol) In_2S_3 (99.95%) in the molar ratio of CaS: In_2S_3 = 1:1 and 1.60 g CsCl (99.95%) were ground thoroughly under a blanket of nitrogen in a drybox and then pressed into a pellet, which was subsequently sealed in an evacuated quartz tube under active vacuum. It was placed in a furnace and heated to 850 °C, held for 92 h. Then a cycle procedure com-

Corresponding authors.

posed of repeated heating and cooling was performed to obtain crystals of good quality. The detail of such cycle was as follows: the above reaction mixture at $850\,^{\circ}\text{C}$ was slowly cooled to $750\,^{\circ}\text{C}$, then heated to $960\,^{\circ}\text{C}$, soaked for $57\,\text{h}$, cooled to $750\,^{\circ}\text{C}$, rapidly raised to $960\,^{\circ}\text{C}$. This process was repeated once more, then the reaction mixture was slowly cooled to $600\,^{\circ}\text{C}$, and finally cooled to room temperature by shutting off the furnace. The reaction mixture was then soaked in distilled water for $12\,\text{h}$, filtered. Pale-yellow crystals of about $0.60\,\text{g}$ (yield 80%, based on In) were isolated.

RbInS₂ was prepared by the similar method by using RbBr as reactive flux. The yield was over 80% based on In.

RbInS₂ and CsInS₂ are very stable in air. The stability and purity of the as-prepared RbInS₂, CsInS₂ samples were confirmed by powder X-ray diffractions that were carried out after the crystals of RbInS₂, CsInS₂ had been obtained for 3 years. All diffraction lines observed in the X-ray powder diagrams were in agreement with those simulated ones based on the single crystal refinement results. No binary sulfide, halide or oxide was detected according to the powder X-ray diffraction or EDX analysis.

3. Crystallography

3.1. Single-crystal structure determination

Chunk-like single crystals of RbInS $_2$ (0.18 mm \times 0.15 mm \times 0.05 mm) and CsInS $_2$ (0.10 mm \times 0.08 mm \times 0.05 mm) were mounted respectively on an Enraf-Nonius CAD4 diffractometer with graphite-monochromated Mo K α radiation (λ = 0.71073 Å). Programmed indexing of 25 reflections from a random search over $20^{\circ} \leq 2\theta \leq 36^{\circ}$ yielded a face-centered monoclinic cell for both compounds. Intensity data were collected using the ω -2 θ scan mode and corrected for Lorentz-polarization as well as for empirical absorption using the ψ -scan technique.

The systematic absences in the data were indicative of space groups of C2/c (No. 15) or Cc (No. 9), the centrommetric C2/c was assumed, and subsequent structure solution and refinement confirmed the choice of this space group.

The structures were solved by the direct methods and difference Fourier synthesis. Final full-matrix least-squares refinements of all variables (coordinates and anisotropic thermal parameters) resulted in the following agreement factors: R = 0.0613, $R_{\rm w} = 0.0666$, S = 1.48 for RbInS₂; R = 0.0560, $R_{\rm w} = 0.0620$, S = 1.35 for CsInS₂. All calculations were performed using the MolEN package [12]. The final difference electron density showed the highest residual peak of 2.739 eV/ų and the lowest of $-0.934\,{\rm eV/Å}^3$, the maximum residual is $1.48\,{\rm Å}$ away from Rb(2) atom and $2.69\,{\rm Å}$ away from In(1) for RbInS₂. While for CsInS₂, the maximum and minimum residual peaks in the final difference electron density were $1.964\,{\rm and}$ $-0.783\,{\rm eV/Å}^3$, respectively. The maximum residual is $2.98\,{\rm Å}$ away from Cs(2) atom, $2.19\,{\rm Å}$ away from In(2) and $1.53\,{\rm Å}$ away from S(5).

Some details of the data collection and refinements are summarized in Table 1, the positional coordinates and isotropic

Table 1 Crystal data and experimental details for RbInS₂ and CsInS₂

Compound	RbInS ₂	CsInS ₂
Formula weight	264.42	311.85
Crystal system	Monoclinic	Monoclinic
Space group	C2/c (No. 15)	C2/c (No. 15)
Cell parameters		
a (Å)	11.071(6)	11.197(3)
b (Å)	11.068(1)	11.158(3)
c (Å)	15.610(7)	16.358(4)
β	100.36(3)	99.92(2)
$V(\mathring{A}^3)$	1882(2)	2013(2)
Z	16	16
F(000)	1888	2176
Density (calculated) (Mg/m³)	3.74	4.12
Temperature (K)	293	293
$\mu(\text{Mo K}\alpha) (\text{mm}^{-1})$	15.61	12.32
Crystal shape, color	Chunk, pale-yellow	Chunk, pale-yellow
Crystal size (mm)	$0.175\times0.15\times0.05$	$0.10\times0.08\times0.05$
$2\theta \text{ range}(^{\circ})$	2-80	2-80
T_{\min}/T_{\max}	0.652/0.995	0.704/0.996
h, k, l Range	$-20 \le h \le 20,$	$-20 \le h \le 0,$
	$0 \le k \le 20,$	$0 \le k \le 20$,
	$-28 \le l \le 0$	$-29 \le l \le 29$
Decay (%)	6.1	0.4
Total reflection data collected	6030	6461
Observed data (with $I > 3.0 \sigma(I)$)	2121	2499
$R_{\rm int}$	0.162	0.025
No. of variables	74	74
Weighting scheme	$w = 1/\sigma^2(F_o)$	$w = 1/\sigma^2(F_o)$
Goodness of fit S	1.48	1.35
R, R_w	0.0613, 0.0666	0.0560, 0.0620
$(\Delta/\sigma)_{\rm max}$	0.0005	0.0004
High/low residual (eV/Å ³)	2.74/-0.93	1.96/-0.78

$$S = \left[\sum_{\substack{w(|F_{\rm o} - F_{\rm c})^2 \\ (N_{\rm obs} - N_{var})}} \right]^{1/2}. \ R = \frac{\sum_{|F_{\rm o}| - |F_{\rm c}|}}{\sum_{|F_{\rm o}|}}. \ R_w = \left[\frac{\sum_{\substack{w(|F_{\rm o}| - |F_{\rm c}|)^2 \\ \sum_{\substack{w|F_{\rm o}|^2}}}} \right]^{1/2}.$$

equivalent thermal parameters are given in Table 2, and important bond distances are given in Table 3. Further details of the crystal structure investigations can be obtained from the Fachinformationszentrum Karlsruhe, 76344 Eggenstein-Leopoldshafen, Germany (fax: +49 7247 808 666; e-mail: crysdata@fiz-karlsruhe.de) on quoting the depository number CSD-415553 for CsInS₂ and CSD-415554 for RbInS₂.

3.2. X-ray powder diffraction

The powder diffraction patterns were recorded on a STOE powder diffractometer (Stoe, Darmstadt), using germanium-monochromatized Cu K α radiation (λ = 1.54057 Å) with the powdered samples enclosed in sealed glass capillaries.

3.3. UV-vis diffuse reflectance spectroscopy

Optical diffuse reflectance spectra of powdered $RbInS_2$ and $CsInS_2$ were performed at room temperature using a Perkin-Elmer Lambda 900 UV-vis spectrophotometer equipped with

Download English Version:

https://daneshyari.com/en/article/1626640

Download Persian Version:

https://daneshyari.com/article/1626640

<u>Daneshyari.com</u>