

Journal of Alloys and Compounds 418 (2006) 68-72



www.elsevier.com/locate/jallcom

## Cs<sub>2</sub>Gd<sub>6</sub>N<sub>2</sub>Te<sub>7</sub>: The first quaternary nitride telluride of the lanthanides

Falk Lissner, Thomas Schleid\*

Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569 Stuttgart, Germany
Received 12 May 2005; received in revised form 2 August 2005; accepted 2 August 2005
Available online 24 January 2006

#### Abstract

The first quaternary nitride telluride with trivalent gadolinium,  $Cs_2Gd_6N_2Te_7$ , was obtained by the reaction of metallic gadolinium with cesium azide, elemental tellurium, and gadolinium trichloride as well as cesium chloride as flux at  $900\,^{\circ}C$  for 7 days in evacuated silica tubes. Single crystals occur as long black needles and crystallize in the monoclinic space group C2/m ( $a=2403.1(2)\,\text{pm}$ ,  $b=424.03(3)\,\text{pm}$ ,  $c=1142.91(7)\,\text{pm}$ ,  $\beta=103.709(4)^{\circ}$ , Z=2). Three crystallographically different  $Gd^{3+}$  cations constitute the structure, two are coordinated by one  $N^{3-}$  ( $d(Gd(1/2)-N)=217\,\text{pm}$ ) and five  $Te^{2-}$  anions ( $d(Gd(1/2)-Te)=305-326\,\text{pm}$ ), and the third  $Gd^{3+}$  by two  $N^{3-}$  ( $d(Gd(3)-N)=244\,\text{pm}$ ) and four  $Te^{2-}$  anions ( $d(Gd(3)-Te)=316-317\,\text{pm}$ ), all forming distorted octahedra about  $Gd^{3+}$ . The  $Cs^{+}$  cation shows a perfect bicapped trigonal prism (C.N.=8,  $d(Cs-Te)=383-431\,\text{pm}$ ) as coordination sphere. Two of these polyhedra are condensed via a common (non-capped) rectangular face building up double prisms  $[Cs_2Te_1]^{22-}$ . Further linkage via triangular faces (along  $[0\ 1\ 0]$ ) and two of the four caps (along  $[0\ 1\ 0]$ ) results in corrugated layers  $[Cs_2Te_7]^{12-}$  running parallel to  $(1\ 0\ 0)$ . However, the main feature of the crystal structure comprises  $N^{3-}$ -centered ( $Gd^{3+}$ )<sub>4</sub> tetrahedra ( $d(N-Gd)=217\,\text{pm}$  ( $2\times$ ) and  $244\,\text{pm}$  ( $2\times$ );  $\chi$  (Gd-N-Gd) =  $107^{\circ}$  ( $2+2+1\times$ ) and  $121^{\circ}$  ( $1\times$ )), which are connected via two vertices each to build up one-dimensional infinite chains  $\frac{1}{\infty}\{[N(Gd1)^1_{1/1}(Gd2)^1_{1/1}(Gd3)^1_{2/2}]^{6+}\}$  (t=terminal, v=vertex-shared) along  $[0\ 1\ 0]$  like in the structure of the  $M_3NCh_3$ -type nitride chalcogenides with M=La-Nd, Sm, Sd-Dy, and Sm (Sm) and

Keywords: Lanthanides; Cesium; Gadolinium; Nitrides; Tellurides; Crystal structure

#### 1. Introduction

In the last decade, nitride chalcogenides of the lanthanides (and their halide derivatives) have been demonstrated to possess an extremely rich chemistry of formula and structural types [1]. However, N³--centered (M³+)4 tetrahedra, which can occur isolated or condensed, provide the main feature in the crystal structures for all of them. In ternary compounds such as M₃NCh₃ (M=La-Nd, Sm, Gd-Dy; Ch=S, Se) [2] these [NM₄]³+ tetrahedra are connected via two corners forming linear chains  ${}^1_\infty\{[N(M)^t_{2/1}(M')^v_{2/2}]\}$  (t=terminal, v=vertexshared). The ratio N³-: M³+=1: 2, realized for the composition M₄N₂Ch₃ (M=La-Nd, Sm, Tb; Ch=S, Se, Te) [3], requires a higher degree of linkage of the N³--centered (M³+)4 tetrahedra. The crystal structures of Sm₄N₂S₃ [4] and Tb₄N₂Se₃ [5,6] show also infinite chains, but now by sharing cis-oriented edges according to  ${}^1_\infty\{[N(M)^t_{1/1}(M')^e_{3/3}]^{3+}\}$  (e=edge-connecting) in

this case. The nitride chalcogenides  $Pr_4N_2S_3$  [7] and  $M_4N_2Se_3$  ( $M=Pr,\ Nd$ ) [6,7] present a layered arrangement, dominated by  $N^{3-}$ -centered ( $M^{3+}$ ) $_4$  tetrahedra again, which share a common edge first. Continuing linkage of the resulting bitetrahedral  $[N_2M_6]^{12+}$  units (also a discrete feature in the crystal structure of  $M_5NSe_6$  [8] with M=Pr) via the *non*-connected vertices to layers according to  $_\infty^2\{[N(M)_{2/2}^e(M')_{2/2}^v]^{3+}\}$  forms different kinds of tetrahedral nets, which can be described as layers consisting of "four- and eight-rings" for  $Pr_4N_2S_3$  and as layers of exclusively "six-rings" for  $Pr_4N_2Se_3$ . Recently we could prepare and characterize the first nitride tellurides of the lanthanides,  $M_4N_2Te_3$  (M=La-Nd) [9], on the basis of single-crystal X-ray diffraction data. The crystal structure is dominated by  $N^{3-}$ -centered ( $M^{3+}$ ) $_4$  tetrahedra of course, which build up *non*-linear infinite chains  $\frac{1}{\infty}\{[N(M)_{4/2}^e]^{3+}\}$  by sharing *trans*-oriented edges.

#### 2. Experimental data

Cs<sub>2</sub>Gd<sub>6</sub>N<sub>2</sub>Te<sub>7</sub>, the first quaternary nitride telluride with cesium and gadolinium, was obtained by the reaction of elemental gadolinium (Gd: ChemPur;

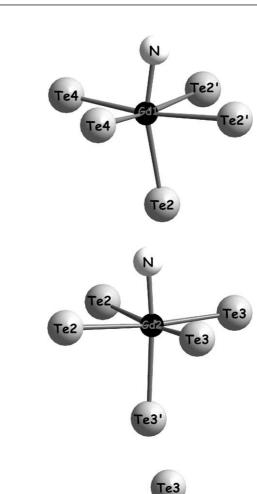
<sup>\*</sup> Corresponding author. Fax: +49 711 685 4241.

E-mail address: schleid@iac.uni-stuttgart.de (Th. Schleid).

Table 1  $Cs_2Gd_6N_2Te_7\hbox{: crystallographic data and their determination}$ 

| 2 0 2 , 7 & 1                                                                            |                                                                                                            |
|------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------|
| Formula                                                                                  | Cs <sub>2</sub> Gd <sub>6</sub> N <sub>2</sub> Te <sub>7</sub>                                             |
| Crystal system                                                                           | Monoclinic                                                                                                 |
| Space group                                                                              | C2/m (no. 12)                                                                                              |
| Formula units (Z)                                                                        | 2                                                                                                          |
| Lattice constants <sup>a</sup>                                                           | a = 2403.12(15)  pm, b = 424.03(3)  pm,                                                                    |
|                                                                                          | $c = 1142.91(7) \text{ pm}, \ \beta = 103.709(4)^{\circ}$                                                  |
| Molar volume, $V_{\rm m}~({\rm cm}^3~{\rm mol}^{-1})$                                    | 340.68(4)                                                                                                  |
| Calculated density, $D_x$ (g cm <sup>-3</sup> )                                          | 6.254                                                                                                      |
| F(000)                                                                                   | 1744                                                                                                       |
| Diffractometer/wavelength                                                                | Kappa-CCD (Nonius)/ $\lambda = 71.07 \text{ pm}$                                                           |
|                                                                                          | (Mo-Kα)                                                                                                    |
| Index range                                                                              | $\pm h_{\text{max}} = 32$ , $\pm k_{\text{max}} = 5$ , $\pm l_{\text{max}} = 15$                           |
| $\Theta_{max}$ ( $^{\circ}$ )                                                            | 28.3                                                                                                       |
| Absorption coefficient, $\mu$ (mm <sup>-1</sup> )                                        | 29.33                                                                                                      |
| Data corrections                                                                         | Background, polarization and Lorentz factors; numerical absorption correction: program <i>X-SHAPE</i> [11] |
| Collected reflections/unique ones                                                        | 13978/1590                                                                                                 |
| $R_{ m int}/R_{\sigma}$                                                                  | 0.092/0.053                                                                                                |
| Structure solution and refinement                                                        | Program package SHELX-93 and -97 [12]                                                                      |
| Scattering factors                                                                       | International Tables, vol. C [13]                                                                          |
| $R_1$ (with $4\sigma$ barrier)                                                           | 0.037 (for 1386 reflections)                                                                               |
| $R_1/wR_2$ /Goodness of Fit (GooF) (for all reflections)                                 | 0.050/0.061/1.122                                                                                          |
| Extinction (g)                                                                           | 0.00022(3)                                                                                                 |
| Residual electron density, $\rho$<br>(e <sup>-</sup> × 10 <sup>6</sup> pm <sup>3</sup> ) | 1.91 (max.), -1.72 (min.)                                                                                  |

 $<sup>^</sup>a$  Single crystal data, further details of the crystal structure investigation can be obtained from the Fachinformationszentrum (FIZ) Karlsruhe, D-76344 Eggenstein-Leopoldshafen, Germany (fax: +49 7247 808 666; e-mail: crysdata@fiz-karlsruhe.de), on quoting the depository number CSD-391315 for  $Cs_2Gd_6N_2Te_7.$ 


Table 2  $\rm Cs_2Gd_6N_2Te_7$ : atomic coordinates and anisotropic thermal displacement parameters,  $U_{ij}$  (pm²)<sup>a</sup>

| Atom | Wyckoff  | position | x/a        |            | y/b | z.l        | 'c        |
|------|----------|----------|------------|------------|-----|------------|-----------|
| Cs   | 4i       |          | 0.06636(4) |            | 0   | 0.         | .69714(9) |
| Gd1  | 4i       |          | 0.16467(2) | 0.16467(2) |     | 0.         | .39163(5) |
| Gd2  | 4i       |          | 0.21612(2) |            | 0   | 0.         | .13008(5) |
| Gd3  | 4i       |          | 0.41009(2) |            | 0   | 0.86393(5  |           |
| N    | 4i       |          | 0.1386(4)  | 0.1386(4)  |     | 0.1964(9)  |           |
| Te1  | 2a       |          | 0          |            | 0   | 0          |           |
| Te2  | 4i       |          | 0.24075(3) | 0.24075(3) |     | 0.         | .66158(8) |
| Te3  | 4i       |          | 0.33622(3) |            | 0   | 0.         | .05830(8) |
| Te4  | 4i       |          | 0.42506(3) |            | 0   | 0.59543(8) |           |
| Atom | $U_{11}$ | $U_{22}$ | $U_{33}$   | $U_{23}$   |     | $U_{13}$   | $U_{12}$  |
| Cs   | 307(5)   | 300(5)   | 313(5)     | 0          |     | 28(4)      | 0         |
| Gd1  | 144(3)   | 150(3)   | 140(3)     | 0          |     | 19(2)      | 0         |
| Gd2  | 112(3)   | 136(3)   | 170(3)     | 0          |     | 44(2)      | 0         |
| Gd3  | 104(3)   | 141(3)   | 162(3)     | 0          |     | 23(2)      | 0         |
| N    | 81(41)   | 163(51)  | 115(50)    | 0          |     | -3(37)     | 0         |
| Te1  | 167(6)   | 148(6)   | 374(8)     | 0          |     | -104(6)    | ) 0       |
| Te2  | 160(4)   | 153(4)   | 163(4)     | 0          |     | 13(3)      | 0         |
| Te3  | 134(4)   | 154(4)   | 171(4)     | 0          |     | 38(3)      | 0         |
| Te4  | 163(4)   | 164(4)   | 227(5)     | 0          |     | 81(3)      | 0         |

<sup>&</sup>lt;sup>a</sup> Defined as temperature factor according to:  $\exp[-2\pi^2(U_{11}h^2a^{*2} + U_{22}k^2b^{*2} + U_{33}l^2c^{*2} + 2U_{23}klb^*c^* + 2U_{13}hla^*c^* + 2U_{12}hka^*b^*)].$ 

Table 3  $Cs_2Gd_6N_2Te_7$ : selected internuclear distances, d (pm), and angles,  $\Delta$ (°)

| Cs                      | Gd1   |                         |       | Gd2                         |       |
|-------------------------|-------|-------------------------|-------|-----------------------------|-------|
| $-\text{Te3} (2\times)$ | 383.2 | $-N(1\times)$           | 217.0 | $-N(1\times)$               | 217.1 |
| $-\text{Te4} (2\times)$ | 393.8 | $-\text{Te4}(2\times)$  | 305.3 | $-\text{Te3} (2\times)$     | 307.1 |
| -Te4' (2×)              | 400.6 | -Te2 (1×)               | 319.2 | $-\text{Te2}(2\times)$      | 317.3 |
| -Te1 (1×)               | 414.0 | $-\text{Te}2'(2\times)$ | 326.9 | $-\text{Te}3'(1\times)$     | 318.2 |
| -Te2 (1×)               | 430.5 |                         |       |                             |       |
| Gd3                     |       | N                       |       |                             |       |
| $-N(2\times)$           | 244.1 | -Gd1 (1×)               | 217.0 | Gd1-N-Gd3 (2×)              | 107.0 |
| $-\text{Te3} (1\times)$ | 315.5 | -Gd2 (1×)               | 217.1 | Gd2-N-Gd3 (2×)              | 107.2 |
| -Te1 (2×)               | 316.1 | −Gd3 (2×)               | 244.1 | $Gd1-N-Gd2$ $(1\times)$     | 107.3 |
| -Te4 (1×)               | 317.3 |                         |       | Gd3–N–Gd3 $'$ (2 $\times$ ) | 120.6 |



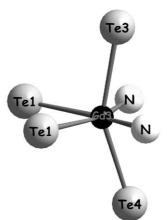



Fig. 1. Coordination polyhedra [(Gd1)NTe $_5$ ], [(Gd2)NTe $_5$ ], and [(Gd3)N $_2$ Te $_4$ ] (top to bottom) in the crystal structure of  $Cs_2Gd_6N_2$ Te $_7$ .

### Download English Version:

# https://daneshyari.com/en/article/1627575

Download Persian Version:

https://daneshyari.com/article/1627575

<u>Daneshyari.com</u>