

Journal of Alloys and Compounds 414 (2006) 113-117

Journal of ALLOYS AND COMPOUNDS

www.elsevier.com/locate/jallcom

Isothermal section of the Y_2S_3 -Cu₂S-GeS₂ system at 870 K and crystal structures of the $Y_3Ge_{1.25}S_7$ and Y_3CuGeS_7 compounds

L.D. Gulay^{a,*}, O.S. Lychmanyuk^a, J. Stępień-Damm^b, A. Pietraszko^b, I.D. Olekseyuk^a

^a Department of General and Inorganic Chemistry, Volyn State University, Voli Ave 13, 43009 Lutsk, Ukraine
^b W. Trzebiatowski Institute of Low Temperature and Structure Research, Polish Academy of Sciences,

Okólna str. 2, P.O. Box 1410, 50-950 Wrocław, Poland

Received 5 July 2005; accepted 19 July 2005 Available online 26 August 2005

Abstract

The Y_2S_3 -Cu₂S-GeS₂ system was investigated using X-ray single crystal and powder diffraction. The existence of the compounds YCuS₂ (YCuS₂ structure type, space group $P2_12_12_1$) and $Y_{0.84}Cu_{1.48}S_2-Y_{2/3}Cu_2S_2$ (Er_{2/3}Cu₂S₂ structure type, space group $P\overline{3}$) was confirmed in the Y₂S₃-Cu₂S section. The formation of the Y₃Ge_{1.25}S₇ (Dy₃Ge_{1.25}S₇ structure type, space group $P6_3$) compound in the Y₂S₃-GeS₂ section was confirmed using X-ray single crystal diffraction (a = 0.9730(1) nm, c = 0.5826(1) nm, $R_1 = 0.0428$). The formation of the compounds Cu₈GeS₆ (β' -Ag₈GeSe₆ structure type, space group *Pmn*2₁), Cu₄GeS₄ (Cu₄GeS₄ structure type, space group $P2_1/c$) and Cu₂GeS₃ (Cu₂SnS₃ structure type, space group *Cc*) was confirmed in the Cu₂S-GeS₂ section. The isothermal section of the Y₂S₃-Cu₂S-GeS₂ system at 870 K was constructed based on data of the phase analysis of 48 samples. The formation of the new quaternary Y₃CuGeS₇ compound (La₃CuSiS₇ structure type, space group $P6_3$, a = 0.9835(1) nm, c = 0.5765(1) nm), $R_1 = 0.0373$) was established in the Y₂S₃-Cu₂S-GeS₂ system. © 2005 Elsevier B.V. All rights reserved.

Keywords: Chalcogenides; Y compounds; Cu compounds; Ge compounds; S compounds; Isothermal section; Crystal structure; Phase diagram; X-ray single crystal diffraction; X-ray powder diffraction

1. Introduction

The crystal structure of the Y₂S₃ compound (Ho₂S₃ structure type, space group $P2_1/m$, a=1.75233 nm, b=0.40107 nm, c=1.01736 nm, $\beta=98.601^{\circ}$) has been determined in Ref. [1].

Several modifications of the phases with composition close to Cu₂S have been established. The crystal structure of Cu₃₁S₁₆ (Cu₃₁S₁₆ structure type, space group *P*2₁/*n*, a=2.6897 nm, b=1.5745 nm, c=1.3565 nm, $\beta=90.13^{\circ}$) has been investigated in Ref. [2]. Low chalcocite Cu₂S (Cu₂S structure type, space group *P*2₁/*c*, a=1.5246 nm, b=1.1884 nm, c=1.3494 nm, $\beta=116.35^{\circ}$) has been investigated also in Ref. [2]. High chalcocite Cu₂S (Cu₂S structure type, space group *P*6₃/*mmc*, a=0.395 nm, c=0.675 nm) has

* Corresponding author.

been investigated in Ref. [3]. A cubic unit cell has been determined at high temperatures for Cu_{1.8}S (Cu₂Se structure type, space group $Fm\bar{3}m$, a=0.5582 nm) [4]. The crystal structure of the Cu₇S₄ compound (Cu₇S₄ structure type, space group *Pnma*, a=0.789 nm, b=0.784 nm, and c=1.101 nm) has been investigated in Ref. [5].

Two modifications of GeS₂ are known. The crystal structure of low temperature modification (LT) (GeS₂ structure type, space group *Pc*, a = 0.6875 nm, b = 2.255 nm, c = 0.6809 nm, $\beta = 120.45^{\circ}$) has been investigated in Ref. [6]. High temperature modification crystallizes also in a monoclinic unit cell (GeS₂ structure type, space group $P2_1/c$, a = 0.6720 nm, b = 1.6101 nm, c = 1.1436 nm, $\beta = 90.88^{\circ}$) [7].

The crystal structure of the YCuS₂ has been described as ErAgSe₂ type of structure (space group $P2_12_12_1$, a = 0.631 nm, b = 1.366 nm, c = 0.394 nm) [8]. Only the lattice parameters have been determined for this compound in Ref. [8]. A complete crystal structure investigation of the YCuS₂

E-mail address: gulay@lab.univer.lutsk.ua (L.D. Gulay).

 $^{0925\}text{-}8388/\$$ – see front matter © 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.jallcom.2005.07.035

compound has been performed in Ref. [9] (YCuS₂ structure type, space group $P2_12_12_1$, a = 0.62756 nm, b = 1.33863 nm, c = 0.39704 nm). The Y_{2/3}Cu₂S₂ compound (Er_{2/3}Cu₂S₂ structure type, space group $P\overline{3}$) has also been investigated in Ref. [8]. For this compound a homogeneity range exists.

The existence of the Y₃Ge_{1.25}S₇ compound in the Y₂S₃-GeS₂ system has been established in Ref. [10]. The Ce₆Al_{10/3}S₁₄ type of structure (space group *P*6₃) has been proposed for this compound and the lattice parameters have been determined: a = 0.973 nm, c = 0.582 nm.

The existence of the compounds Cu₈GeS₆ (β' -Ag₈GeSe₆ structure type, space group *Pmn2*₁, *a*=0.70445 nm, *b*= 0.69661 nm, *c*=0.98699 nm) [11], Cu₄GeS₄ (Cu₄GeS₄ structure type, space group *P2*₁/*c*, *a*=0.9790 nm, *b*= 1.3205 nm, *c*=0.9942 nm, β =100.90°) [12] and Cu₂GeS₃ (Cu₂SnS₃ structure type, space group *Cc*, *a*=0.6449 nm, *b*=1.1319 nm, *c*=0.6428 nm, β =108.37°) [13] has been established in the Cu₂S–GeS₂ section.

No quaternary compounds have been reported for the Y_2S_3 -Cu₂S-GeS₂ system in the literature.

The isothermal section of the Y_2S_3 - Cu_2S - GeS_2 system at 870 K and the crystal structures of the $Y_3Ge_{1.25}S_7$ and Y_3CuGeS_7 compounds are presented in this paper.

2. Experimental details

The samples were prepared by melting of the high purity elements (the purity of the ingredients was better than 99.9 wt.%) in evacuated silica ampoules. The synthesis was realized in a tube furnace. The ampoules were heated with a heating rate of 30 K/h to the maximal temperature, 1420 K. The samples were kept at the maximal temperature during 4 h. After that they were cooled slowly (10 K/h) to 870 K

and annealed at this temperature during 240 h. After annealing the ampoules with the samples were quenched in cold water.

Diffraction-quality single crystals of the Y₃Ge_{1.25}S₇ and Y₃CuGeS₇ compounds for the crystal structure investigation were selected from the samples of the respective compositions. The X-ray intensities data were collected on a KUMA diffraction KM-4 four-circle single crystal diffractometer equipped with CCD camera using graphitemonochromatized Mo K α radiation ($\lambda = 0.071073$ nm). The intensities of the reflections were corrected for Lorentz and polarisation factors. Semi-empirical absorption correction was applied. The crystal structure was solved by Patterson methods [14] and refined by full matrix least squares method using SHELX-97 program [15].

X-ray powder diffraction patterns of the samples were recorded using a DRON-4-13 powder diffractometer (Cu K α radiation, $10^{\circ} \le 2\Theta \le 80^{\circ}$, step scan mode with a step size of 0.05° and counting time of 1 s per data point). Phase analysis was carried out. X-ray powder diffraction patterns of the samples for the crystal structure determination were recorded using a DRON-4-13 powder diffractometer (Cu K α radiation, $10 \le 2\Theta \le 100^{\circ}$, step scan mode with a step size of 0.05° and counting time of 10 s per data point). Lattice parameters were calculated using least-square method realized in the CSD program [16].

3. Results and discussion

3.1. Investigation of the Y_2S_3 -Cu₂S system

The existence of the YCuS₂ compound (YCuS₂ structure type, space group $P2_12_12_1$) was confirmed in the

Table 1

Crystal data and structure refinement details of the Y3Ge1.25S7 and Y3CuGeS7 compounds

Empirical formula	Y ₃ Ge _{1.25} S ₇	Y ₃ CuGeS ₇
Formula weight	581.89	627.28
Space group	<i>P</i> 6 ₃ (No. 173)	<i>P</i> 6 ₃ (No. 173)
Unit cell dimensions	a = 0.9730(1) nm; c = 0.5826(1) nm	a = 0.9835(1) nm; c = 0.5765(1) nm
Volume	$0.4776(1) \mathrm{nm^3}$	0.4829(1) nm ³
Number of formula units per unit cell	2	2
Calculated density (g/cm ³)	4.046	4.314
Absorption coefficient (mm^{-1})	23.384	24.510
F(000)	538	580
Crystal size	$0.06\text{mm}\times0.08\text{mm}\times0.10\text{mm}$	$0.07\text{mm}\times0.10\text{mm}\times0.12\text{mm}$
Θ Range for data collection	4.19–30.46	4.14-30.50
Index ranges	$-11 \le h \le 13; -13 \le k \le 11; -7 \le l \le 7$	$-14 \le h \le 13; -11 \le k \le 14; -7 \le l \le 7$
Reflections collected	7240	7360
Independent reflections	943 [$R(int.) = 0.1284$]	976 [<i>R</i> (int.) = 0.0869]
Refinement method	Full-matrix least-square on F^2	Full-matrix least-square on F^2
Data/restraints/parameters	943/0/37	976/0/37
Goodness-of-fit on F^2	1.099	1.052
Final <i>R</i> indices $[I > 2 \sigma(I)]$	$R_1 = 0.0428; wR2 = 0.0733$	$R_1 = 0.0373; wR_2 = 0.0796$
<i>R</i> indices (all data)	$R_1 = 0.0612; wR2 = 0.0779$	$R_1 = 0.0478; wR_2 = 0.0869$
Extinction coefficient	0.008(1)	0.014(1)
Largest diff. peak and hole $\times 10^{-3}$ (e/nm ³)	0.890 and -1.015	1.046 and -0.983

Download English Version:

https://daneshyari.com/en/article/1627707

Download Persian Version:

https://daneshyari.com/article/1627707

Daneshyari.com