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Splitting Rolling Simulated by Reproducing Kernel Particle Method 

CUI Qing-ling , LIU Xiang-hua, WANG Guo-dong 
(State Key Laboratory of Rolling and Automation, Northeastern University, Shenyang 110004, Liaoning , China) 

Abstract: During splitting rolling simulation, remeshing is necessary to prevent the effect of severe mesh distortion 
when the conventional finite element method is used. However, extreme deformation cannot be solved by the finite 
element method in splitting rolling. The reproducing kernel particle method can solve this problem because the con- 
tinuum body is discretized by a set of nodes, and a finite element mesh is unnecessary, and there is no explicit limita- 
tion of mesh when the metal is split. To ensure stability in the large deformation elastoplastic analysis, the Lagrange 
material shape function was introduced. The transformation method was utilized to impose the essential boundary 
conditions. The splitting rolling method was simulated and the simulation results were in accordance with the experi- 
mental ones in the literature. 
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Symbol List 

C(s, 2- s)-Corrected function; 
d,, ( t )  -Generalized displacement; 
Ad-Displacement increment; 
fl-Node value of f ( s )  at node I ;  
f” (z)-Reproducing function of f(s) ; 
f” ( 5 )  -Reproducing kernel approximation of f ( s )  ; 

~ E J  f/Jt 1 [Xl-Material derivative; 
f’=af/as,--Spatial derivative; 

jexp External force vector: 

P-Internal force vector; 
H’--Sobolev space of degree one; 
I--Identity tensor; 

K-Stiffness matrix; 

M-Mass matrix; 
NP-Whole number of nodes: 

A 

A 

Metal splitting rolling technique is a novel metal 
forming method where the workpiece is split length- 
wise into two or more sections using roller or other 
equipments during hot rolling. Extremely large de- 
formation and metal split occur during splitting roll- 
ing. Numerical simulation with the finite element 
method (FEM) breaks down due to severe mesh dis- 

n, ---Surface outward normal in the current configura- 

s---Dummy variable of integration; 
up ---Initial displacement; 
u ( X ,  t)-Material displacement; 
AVI-Volume related with node I; 
v; --Initial velocity; 
w,, (x--s)-Kernel function; 
+ I  (x)-Shape function of RKPM; 
u, -Cauchy stress; 
p-Density ; 

611 -Kronecker function; 
Subscript 
I, J ,  K-Node; 
i, j , k, l-Spatial coordinate; 
n-Time step: 
-Iteration number. 

tion; 

tortion, and therefore, there is a need to re-mesh, 
but the projection field variables between meshes lead 
to a degradation in accuracy. And when the metal is 
split, the FEM fails owing to the existence of the 
meshc1*”. A novel meshless method has been devel- 
oped to avoid these problems. The meshless method 
discretizes a continuum body by a finite number of 
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nodes, and the displacement field is interpolated un- 
der those nodes without the aid of an explicit mesh. 
This characteristic simplifies model refinement pro- 
cedures, and the use of smoother shape functions ef- 
fectively handles large material distortion simula- 
tion. Recently, the meshless method is widely used 
to solve metal forming problems; for example, Chen 
J S et alc3.43 used the reproducing kernel particle 
method (RKPM) to simulate ring compression, and 
XIONG Shang-wu et alC5’ simulated the rigid-plastic 
material’s plane strain rolling process using RKPM. 
Bonet J et alL6’ utilized the corrected smooth particle 
hydrodynamics (CSPH ) to perform several two-di- 
mensional simulations of basic metal forming, such 
as extrusion and forging. LI Chang-sheng et alC7’ 
used the CSPH to solve the upsetting of the billet. 
Li G Y et  al[*’ utilized the element free Galerkin 
method (EFGM) to simulate the elasto-plastic mate- 
rial’s plane strain extrusion process. 

Although the application of a meshless method 
to  simplify the metal-forming process has progressed 
to a certain extent,  the process of complex metal 
forming, such as  splitting rolling simulated by a 
meshless method, has not been reported due to the 
complex boundary condition and utmost deforma- 
tion. 

The  large deformation elastoplastic RKPM is 
used to simulate the splitting rolling process in this 
study. The  Lagrangre material shape function that 
deforms with the material was introduced for large 
deformation to ensure stability. A transformation 
method was used to satisfy the essential boundary 
condition[g1, Comparison of the computational re- 
sults with experimental ones shows that RKPM is 
more competitive for simulation of metal forming. 

1 Reproducing Kernel Particle Method 

Liu W K et alclo1 proposed RKPM based on an 
integral transformation with a modified kernel that 
exactly reproduces polynomials, i. e. , 

f R ( x ) y  J C(x,x-s)w,,(x-sS)f(s)ds (1) 
n 

T h e  corrected function is defined as 
a x ,  x- s) = pT(0)M-I (x)p(x-- s) 
pT (x- s> = [ 1 , x - s , .*. , (x- s) ”1 
M ( x ) =  p(x-sS)pT(x-s)Wh(x-s)ds ( 4 )  

( 2 )  
( 3 )  

I, 
Eqn. (1  ) can reproduce exactly an N-th order 

polynomial ; therefore, this method satisfies the N- 

th  consistency conditions. T h e  discretization form of 
Eqn. (1) is 

NP 

I = 1  
NP 

1=1 

f * ( ~ ) =  C. C ( X , X - X I ) W ~ ( X - X ~ ) A V ~ ~ ~ =  

z +I(X> f l  (5 )  

where 
81 (XI = C ( X  X-XI W I  (x-x, 1 AV, ( 6 )  

2 Large Deformation Elastoplastic RKPM 

2.1 Problem statement and variational equation 
Let us consider a body which initially occupies a 

region ax with boundary rx and is deformed from its 
initial configuration to a deformed configuration a, 
with deformed boundary r,. The body is subjected 
to a body force 6, in a,, surface traction h, on the 
natural boundary 2 1  , and given displacement g, on 
the essential boundary El. In the fixed Cartesian 
coordinate system, the particle positions in Rx are 
denoted by X ,  and those in a, at time t by a map- 
ping function x = p ( X , t ) .  T h e  model is given a s  fol- 
lows: 

p IL , =uZf . f  +b ,  in a, ( 7 )  
Boundary conditions 

gtJnf =h,  on I? ( 8 )  
u,=g, on E ( 9 )  

U , ( X , O )  =up (XI (10) 
n,(X,O)=vP(X> (11) 

Initial conditions 

T h e  variational equation is formulated as fol- 
lows: 6 , ,  h, , g ,  , up, and vy are given, u , (X, t>  € Hb 
is found ( H k = { u  : u E  H ’ ,  for u , = g , } ) ,  such 
t h a t f o r a l l 6 u , € H b ( H b = { w :  w€Hb, f o r E w , =  
0 )  1, the following equation is found satisfactory. 

8lI=j . 6u,p i i ,dR+ &,,,a, dR- 
n.2 % 

J 6u,b,dO- S, Gu,h,dr=O (12)  

4 L 
nz 

For the non-linear problem, the linearized Eqn (12) 

6n=j 6ugA’rL,dnf Gu,., (D, , ,  +T,,,)Au~.ldn- 

I 6u,Ab,dfl- It, 6u,Ah,dI‘=O (13) 

can be written in the following form: 

01 

2 .2  Lagrangian material shape function 
In RKPM computation, the support of the ker- 

nel function must cover enough particles for the 
method to be stableC6’. In this study, the material 
kernel function that deforms with the material is 
used. The  support of the material kernel function 
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