

Available online at www.sciencedirect.com

Materials Today: Proceedings 3 (2016) 1297 - 1302

International Semiconductor Science and Technology Conference 2015 (ISSTC 2015)

Photovoltaic performance photodiodes based on reduced graphene Oxide-Fe₃O₄ and carbon nanotube-Fe₃O₄ nanocomposites

İbrahim Karteri^a*, Serhan Uruş^{a,b}, Halil Özerli^a, Şükrü Karataş^{a,c}

^aDepartment of Materials Science And Engineering, Kahramanmaras Sutcu Imam University, Kahramanmaras 4610, Turkey ^bDepartment of Chemistry, Kahramanmaras Sutcu Imam University, Kahramanmaras 4610, Turkey ^cDepartment of Physics, Kahramanmaras Sutcu Imam University, Kahramanmaras 4610, Turkey

Abstract

We have studied photovoltaic performance photodiodes based on reduced graphene oxide-iron oxide (RGO-Fe₃O₄) and multi-wall carbon nanotube-iron oxide (MWCNT-Fe₃O₄) nanocomposites. Characterization of the RGO-Fe₃O₄ and the CNT-Fe₃O₄ nanostructures is investigated in detail by X-ray diffraction (XRD), FT-IR spectroscopy and scanning electron microscope (SEM). RGO is synthesized using modified Hummers' method oxidation of graphite powder. The photovoltaic properties of the RGO-Fe₃O₄/p-Si/Al and the MWCNT-Fe₃O₄/p-Si/Al photodiodes are analyzed. The maximum electrical power values of devices were found to be 12.9 μ W and 10.4 μ W under 100 mW/cm² illumination, respectively. The devices exhibit photovoltaic behaviors with open circuit voltages (V_{oc}) and short circuit currents (I_{sc}). The diodes with MWCNT-Fe₃O₄ and RGO-Fe₃O₄ nanocomposites may be used as a photodiode in optoelectronic applications.

© 2016 Elsevier Ltd. All rights reserved. Selection and Peer-review under responsibility of Conference Committee Members of International Semiconductor Science and Technology Conference 2015 (ISSTC 2015).

Keywords: Reduced graphene oxide, Carbon nanotube, Photovoltaic device, Diode

* Corresponding author. Tel.: +90 344 280 1428; fax: +90 344 280 1352. *E-mail address*:ibrahimkarteri@gmail.com (İbrahim Karteri)

1. Introduction

Carbon is a group IV element that is very active in producing many molecular compounds and crystalline solids. Many new crystalline forms of carbon have only recently been experimentally discovered in the last few decades. These newer crystalline forms include buckyballs, carbon nanotubes (CNTs), and graphene. In addition, CNTs and graphene occupy a reduced amount of space compared with their older siblings. Hence, they are often referred to as reduced-dimensional or low-dimensional solids or nanomaterials. There are two families of CNTs, namely single-wall CNTs and multi-wall CNTs (MWCNT) [1]. CNTs have drawn great attention, for their high aspect ratios, predominant electrical and mechanical properties [2]. In the meantime, graphene, a free standing two dimensional crystal with one atom thickness, has attracted much attention because of its unique properties, such as remarkable electronic properties, superlative mechanical strength, surface properties [3] and has been extensively applied to prepare various hybrid nanomaterials [4-6].

In this work, attempts have been made to synthesize graphene oxide by improving the Hummers' method and to synthesize RGO-Fe₃O₄ and MWCNT-Fe₃O₄ nanocomposites. We have studied photovoltaic performance of photodiodes based on RGO-Fe₃O₄ and MWCNT-Fe₃O₄ nanocomposites. The photovoltaic properties of the RGO-Fe₃O₄/p-Si/Al and the MWCNT-Fe₃O₄/p-Si/Al photodiodes are analyzed.

2. Materials and Methods

2.1. Synthesis of graphene oxide

Graphene oxide (GO) was prepared from extra pure graphite powder (Sigma Adrich, 99.99%) according to improved Hummers' method. The graphene oxide was synthesized as powder and more details are available in our previous study [7].

2.2. Synthesis of RGO-Fe₃O₄ and MWCNT-Fe₃O₄ nanocomposites

0.5 gr GO and MWCNT in two flask separately were dispersed in Ethanol: H_2O (1:1) solution and ultrasonicated for 10 min. 80 mmol FeCl₃-6H₂O and 40 mmol FeCl₂-4H₂O were dissolved with deionized water in N₂ atmosphere and 3.5 ml oleic acid was added to this solution and pH was adjusted about 4 using NH₃(%14) solution in another flask with GO and MWCNT dispersions respectively. Solutions were mixed slowly and stirred for 8 h. Then, the solutions were filtered and washed with Ethanol:H₂O (1:1) and dried at 50 °C in oven for 12 h. Finally, the RGO-Fe₃O₄ and MWCNT-Fe₃O₄ nanocomposites were obtained as powders.

2.3. Preparation of the photodiodes

The RGO-Fe₃O₄/p-Si/Al and the MWCNT-Fe₃O₄/p-Si/Al photodiodes devices have been prepared using *p*-type Si (100) wafer with 380 µm thickness and 1-10 Ω cm resistivity as substrate. The wafer, *p*-type Si was cut into pieces of 1.0 cm length by 1.0 cm breadth. The *p*-type Si substrates were ultrasonically cleaned in acetone for 15 min. followed each by using ultrasonic cleaner and later cleaned with deionized water. The *p*-type Si substrates were then exposed to oxygen plasma cleaner in order to make the surface hydrophilic and dried. The ohmic back contact has been made by evaporating Al on the back surface of the substrate, followed by a temperature treatment at 580 °C for 3 min. in N₂ atmosphere. Then, we used the spin coating method to form the RGO-Fe₃O₄/p-Si/Al and the MWCNT-Fe₃O₄/p-Si/Al structures. The RGO-Fe₃O₄ and MWCNT-Fe₃O₄ aqueous suspensions with a concentration of 0.4 mg/ml of nanocomposites was suspended in deionized water. The prepared nanocomposites aqueous suspensions were stirred at 50 °C for 2 hours to yield clear and homogenous suspensions. In order to prepare RGO-Fe₃O₄ and MWCNT-Fe₃O₄ films on the *p*-Si substrates were spin coated at 4,000 rpm for 40 s. This is followed by annealing the film at 50°C for 1 hour in N₂ atmosphere. The thickness of the films was measured using profilometer and observed to be about 100 nm. In addition, the front contacts have been formed by sputtering silver (Ag) as dots with diameter of about 1.0 mm on the front surface of the RGO-Fe₃O₄/p-Si/Al and the MWCNT-Fe₃O₄/p-Si/Al through a shadow mask. Fig. 1 shows the schematic structure of RGO-Fe₃O₄/p-Si/Al and MWCNT-Fe₃O₄/p-Si/Al and MWCNT-Fe₃O₄/p-Si/Al structures used in this study.

2.4. Characterization tools of GO, nanocomposites and photodiodes

The structures of GO, GO-Fe₃O₄ and MWCNT- Fe₃O₄ nanocomposites were examined by XRD using Philips X`Pert PRO diffractometer with CuK_{α} radiation (λ =0.154nm) at 40 kV and 30 mA. The nanocomposite powders were examined by means of scanning electron microscope (Zeiss EVO 10LS-SEM) due to small nanosize of

Download English Version:

https://daneshyari.com/en/article/1630884

Download Persian Version:

https://daneshyari.com/article/1630884

Daneshyari.com