

Available online at www.sciencedirect.com

Trans. Nonferrous Met. Soc. China 23(2013) 2792-2796

Transactions of Nonferrous Metals Society of China

www.tnmsc.cn

Effects of electric pulse modification on liquid structure of Al-5%Cu alloy

Jian-zhong WANG¹, Jin-gang QI¹, Zuo-fu ZHAO^{1,2}, Hong-sheng GUO¹, Tao ZHAO¹

1. Faculty of Materials Science and Engineering, Liaoning University of Technology, Jinzhou 121001, China;

2. School of Metallurgical and Ecological Engineering,

University of Science and Technology Beijing, Beijing 100083, China

Received 10 July 2012; accepted 27 November 2012

Abstract: The electric pulse modification (EP, EPM) of liquid metal is a novel method for grain refinement. The structure of EP-modified Al-5%Cu melt was characterized by high-temperature X-ray diffractometry. The results show that the Cu-containing Al clusters remarkably increase in the EP-modified melt, furthermore, these clusters in that case tend to contract due to the decrease of relevant atomic radius and the co-ordination number. This kind of liquid-phase structure leads to a more homogeneous Cu-rich phase distribution in the final solidification structure. Differential scanning calorimetry (DSC) tests indicate that the solidification super-cooling degree of the EP-modified liquid phase is 2.36 times that of the unmodified. These facts suggest that the atom cluster changes in EP-modified Al-5%Cu melt would disagree with that by EPM model previously proposed in liquid pure metal. Key words: electric pulse modification; Al-Cu melt; atomic cluster; liquid structure

1 Introduction

With the rapid development of solidification technology and cluster physics, the effects of melt structure on the final solidification structure attract more attention [1,2]. Recently, researchers have found that the imposed electric pulse (EP) on metal melt could refine grains, reduce segregation of solute elements and improve mechanical properties of the alloys [3-5]. It is generally considered that the interesting results stem from a certain structural change in liquid metal [6,7]. However, due to the difficulty of liquid structure tests requiring elevated temperature combined with pulse electric field, the past investigations on the above EP-modified melt were mostly carried out using so-called post-mortem examination methods such as metallographic examination [8], performance test [9]. As a result, the mechanism of EP treatment is still a hypothetical theory and far from being understood. Fortunately, the outstanding structure heredity of the EP-modified liquid aluminum has been reported [10,11]. It is indicated that for the EP-modified aluminum casting, its liquid structure after once remelting could roughly

substitute for that in the EP-modified duration. Based on the significant heredity characteristics, previous researches were done for investigations of the structure transformation in EP-modified liquid aluminum [12,13]. However, the responses for EP should have some discrepancies between the binary alloy melt and pure metal melt [14]. The present work will examine the changes of EP-modified Al–5%Cu melt according to the method in Ref. [12], in order to illuminate the EP treatment mechanism for binary alloy system.

2 Experimental

The Al–5%Cu alloy was smelted from pure aluminum (99.99%) and pure copper (99.99% in mass fraction) raw materials in an electric resistance furnace, then appreciable amount of the prepared Al–5%Cu alloy was heated to 750 °C and melted. After holding at this temperature for 5 min and the subsequent refining procedure (C₂Cl₆ was here adopted as refining agent), two columnar graphite electrodes with dimensions of $d5 \text{ mm} \times 200 \text{ mm}$ were vertically inserted 50 mm into liquid alloy and EP treatment was performed. The EP parameters were optimized as follows: 500 V peak

Foundation item: Project (51074087) supported by the National Natural Science Foundation of China; Project (201102088) supported by the Natural Science Foundation of Liaoning Province, China; Project (LJQ2011065) supported by Liaoning Excellent Talents in University, China; Project (2010921096) supported by Liaoning Baiqianwan Talents Program, China

Corresponding author: Jin-gang QI; Tel: +86-416-4199125; E-mail: qijingang1974@sina.com DOI: 10.1016/S1003-6326(13)62799-5

voltage, 3 Hz frequency and 30 s treating time. Then the molten alloy was poured into a metal mold by a manipulator at room temperature. The unmodified specimen used for comparison was also prepared under the same cooling conditions. The tested cuboid specimens with dimensions of 20 mm \times 16 mm \times 12 mm for high temperature X-ray diffraction were wire-cut at the same central section of the castings. The EP treatment experimental setup is schematically shown in Fig. 1.

Fig. 1 Schematic pattern of EP treatment setup

The melt structure tests were carried out using a high temperature X-ray diffractometer with Mo K_{α} radiation (wavelength λ =0.071 nm). A graphite single crystal was used for monochromatisation of X-ray scattered by the specimens. The accuracy of the angle was 0.001°, and the scattering angle 2θ ranged from 5° to 90°. The magnitude of wave vector Q ($Q=4\pi\sin\theta/\lambda$) was then from about 0.2 to 120 nm⁻¹. The scanning step was 0.02° within the region of principal peak and 0.5° at rest values of wave vectors. During heating, diffraction measurements were made at 700, 750, 800 and 1000 °C, and at each temperature, the liquid Al-5%Cu alloy was held for 30 min before test. Differential scanning calorimetry (DSC) was performed respectively on specimens without EPM and with EPM using a SETARAM thermal analysis tester.

3 Results and discussion

Figure 2(a) shows the structure factor (SF) curve of liquid Al–5%Cu alloy as a function of wave vector Q at different elevated temperatures and the SF curve shown in Fig. 2(b) relates to the EP modification.

One can see that their common features are a symmetrical principal peak and a similar broadened and blunted trend with increasing temperature. As for the unmodified one, it is noted in Fig. 3 that the neighbor distance r_1 changes from 0.290 nm to 0.295 nm during the 700–1000 °C temperature zone, which is dissimilar

Fig. 2 Structure factor curves of liquid Al–5%Cu alloy at different temperatures: (a) Unmodified; (b) EP-modified

Fig. 3 Changes of r_1 and N_s in liquid Al–5%Cu alloy at various temperatures

with the thermal contraction phenomenon of atomic cluster in liquid pure aluminum. On the other hand, the value of coordinating number N_s exhibits a fluctuant variation tendency; furthermore, the minimum value of N_s appears at the EP treatment temperature of 750 °C, which could be ascribed to the abnormal changes of short range order (SRO) at this temperature. At 800 °C, N_s reaches its maximum value of 9.469, then N_s declines, indicating the leading role of thermal motion at an

Download English Version:

https://daneshyari.com/en/article/1636371

Download Persian Version:

https://daneshyari.com/article/1636371

Daneshyari.com