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Abstract: Considering both the effects of the interfacial normal velocity dependence of solute segregation and the local
nonequilibrium solute diffusion, an extended free dendritic growth model was analyzed. Compared with the predictions from the
dendritic model with isosolutal interface assumption, the transition from solutal dendrite to thermal dendrite moves to higher
undercoolings, i.e., the region of undercoolings with solute controlled growth is extended. At high undercoolings, the transition from
the mainly thermal-controlled growth to the purely thermal-controlled growth is not sharp as predicted by the isosolute model, but
occurs in a range of undercooling, due to both the effects of the interfacial normal velocity dependence of solute segregation and the
local nonequilibrium solute diffusion. Model test indicates that the present model can give a satisfactory agreement with the available

experimental data for the Ni—0.7% B (mole fraction) alloy.
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1 Introduction

In past decades, numerous free dendritic growth
models have been established, which include phase field
models [1-3], models in the framwork of microscopic
solvability theory [4—6] and models based on Ivantsov
approach [7—21]. Phase field models adopt an order
parameter, i.e., phase-field variable ¢ to describe the
thermodynamic state of a local volume. This approach
does not require tracking the solid—liquid interface and
describes dynamical phenomena at the interface and in
bulk phases through a single formalism. Microscopic
solvability theory formulates dendritic growth problem
as a single integro-differential equation and solves it
without further hypotheses. The anisotropies of the
interfacial energy and interfacial kinetics were taken into
account, successfully. However, both of the phase field
theory and microscopic solvability theory are very
complicated, mathematically. It is not easy to be used for
them, in practice. In contrast, the series of models based
on Ivantsov approach received wide acceptance from

materials scientists, due to its relative simplicity as well
as the ability to describe the solidification with dendritic
morphology.

During steady-state free dendritic growth, the
paraboloid of revolution is a good approximation for the
dendrite tip shape [22]. Based on this assumption,
IVANTSOV [7,8] first obtained the exact solutions of the
classical Fick diffusion equations for solute and thermal
diffusions in bulk liquids. Subsequently, a series of free
dendritic growth models were proposed by adopting the
Ivanstov results, such as the well-known BCT
model [12], the models developed by GALENKO and
DANILOV [13,14] and SOBOLEV [15,16]. In BCT
model, the thermodynamic driving force, the kinetic
undercooling and Aziz’s solute trapping model [23] were
introduced to describe high Peclet conditions. However,
this model could only deal with the deviation from local
equilibrium state at the solid—liquid interface. By
introducing the local nonequilibrium diffusion model, the
dendritic growth models developed by GALENKO and
DANILOV [13,14] and SOBOLEV [15,16] could
describe the local nonequilibrium state both at the
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interface and in bulk liquids. Recently, WANG et al [20]
further extended the series of models to concentrated
multi-component alloys. In all of these models, however,
it is assumed that the interface is isothermal and
isosolutal.

During steady-state growth, the normal velocity
varies along the dendritic interface. This variation would
lead to different solute partitioning along the interface
and further lead to a nonisosolutal solid—liquid interface.
It is also well known both from phase field and
experiments, that the solute content in a dendritic
structure has a typical appearance, i.e., high
concentration along the stem and low concentration on
both sides. Therefore, it is significant to analyze the
effect of the interfacial normal velocity dependence of
solute segregation on the dendritic solidification behavior.
Recently, a generalized free dendritic growth model was
developed by solving the classical Fick diffusion
equation exactly under the boundary condition of
nonisothermal and nonisosolutal interface [24]. However,
the effect of local nonequilibrium solute diffusion in bulk
liquid was not taken into account. In the present work, a
relatively simple method was proposed to analyze both
the effects of the interfacial normal velocity dependence
of solute segregation and the local nonequilibrium solute
diffusion. An experimental comparison with the available
experimental data for the Ni—0.7%B (mole fraction)
alloy was also made.

2 Model

In this section, two independent variables were
introduced to describe the dendritic morphology during
steady state solidification. Based on this interfacial
morphology, the solute trapping model recently
developed by LI and SOBOLEV [25] was outlined. Then
taking into account the interfacial driving force, an
interfacial ~ response  function @ was  proposed,
approximately. From this interfacial response function,
the tip radius of curvature was derived. Finally, an
extended free dendritic growth model was obtained for
binary alloys, which could deal with both the interfacial
normal velocity dependence of solute segregation and the
local nonequilibrium solute diffusion.

2.1 Extended solute trapping model

During steady-state solidification, the dendritic
morphology could be approximated by a paraboloid of
revolution [22]. For describing the interfacial
morphology with the paraboloid of revolution uniquely,
it is required mathematically to introduce the radius of
curvature (R) at the dendrite tip. This parameter has been
widely adopted in previous dendritic models [9—21]. In
the present work, taking into account the interfacial

normal velocity dependence of solute partitioning, it is
not enough to only adopt the parameter R. Here, an angle
(0) is introduced. The normal direction at an interface
element makes the angle 6 with respect to the growth
axis. For steady-state growth at a given interface
migration velocity V (i.e., tip velocity), there is a critical
value of the angle #. This critical angle 6, i.e., the
maximum angle, is marked by 6. For 6>6.., the
solid—liquid interface becomes unstable and the
secondary dendrite arm and necking phenomenon may
appear. The present model focuses on the range of
0<6<6,.x, which corresponds to the shape preserving part
of the dendritic interface. Therefore, considering the
interfacial normal velocity dependence of solute
segregation, one should use both the parameter R and the
angle O,.c to describe the steady-state shape and the
boundary.

Along the dendritic interface from the tip (6=0) to
the root (6=6..x), the normal velocity ¥, decreases,
which could be described by V,(6)=Vcosf due to the
shape preserving condition. The normal velocity V,(6)
can be regarded as the effective velocity which controls
the solute redistribution at the interface element marked
by angle 6. Introducing this dependence of ¥, on 6 into
the solute trapping model proposed by SOBOLEV
[15,16], the solute partition coefficient K could be further
described as [25]

Ke(1-V2cos? 0/VE)+V cosO/Vp,
(1-V? cos? (9/V§)+VC0549/VDI

KWV,0)= Veos <Vp (1)

I, Vecos@=Vp

where Kg is the equilibrium partition coefficient, Vp; is
the interface diffusive speed and Vp is the bulk liquid
diffusive speed.

In order to analyze the effect of the interfacial
normal velocity dependence of solute segregation on the
dendritic solidification behavior, it is useful to calculate
the average of partition coefficient K(V) from the tip
to the root of the dendrite. For the interface
approximated by a paraboloid of revolution, K (V)
could be given as follows [25]:

0,
3 j " K(V,0)exp(36)d6
exp(30,,x) —1
1, VeosO,.. 2 Vp

max —
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KW) = , VeosO. <Vp (2)

2.2 Interfacial response function

In previous models, the driving force on
solidification, i.e., the effective driving free energy
AGgrr was calculated with the values for liquid solute
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