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Abstract: Considering both the effects of the interfacial normal velocity dependence of solute segregation and the local 
nonequilibrium solute diffusion, an extended free dendritic growth model was analyzed. Compared with the predictions from the 
dendritic model with isosolutal interface assumption, the transition from solutal dendrite to thermal dendrite moves to higher 
undercoolings, i.e., the region of undercoolings with solute controlled growth is extended. At high undercoolings, the transition from 
the mainly thermal-controlled growth to the purely thermal-controlled growth is not sharp as predicted by the isosolute model, but 
occurs in a range of undercooling, due to both the effects of the interfacial normal velocity dependence of solute segregation and the 
local nonequilibrium solute diffusion. Model test indicates that the present model can give a satisfactory agreement with the available 
experimental data for the Ni−0.7% B (mole fraction) alloy. 
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1 Introduction 
 

In past decades, numerous free dendritic growth 
models have been established, which include phase field 
models [1−3], models in the framwork of microscopic 
solvability theory [4−6] and models based on Ivantsov 
approach [7−21]. Phase field models adopt an order 
parameter, i.e., phase-field variable φ to describe the 
thermodynamic state of a local volume. This approach 
does not require tracking the solid−liquid interface and 
describes dynamical phenomena at the interface and in 
bulk phases through a single formalism. Microscopic 
solvability theory formulates dendritic growth problem 
as a single integro-differential equation and solves it 
without further hypotheses. The anisotropies of the 
interfacial energy and interfacial kinetics were taken into 
account, successfully. However, both of the phase field 
theory and microscopic solvability theory are very 
complicated, mathematically. It is not easy to be used for 
them, in practice. In contrast, the series of models based 
on Ivantsov approach received wide acceptance from 

materials scientists, due to its relative simplicity as well 
as the ability to describe the solidification with dendritic 
morphology. 

During steady-state free dendritic growth, the 
paraboloid of revolution is a good approximation for the 
dendrite tip shape [22]. Based on this assumption, 
IVANTSOV [7,8] first obtained the exact solutions of the 
classical Fick diffusion equations for solute and thermal 
diffusions in bulk liquids. Subsequently, a series of free 
dendritic growth models were proposed by adopting the 
Ivanstov results, such as the well-known BCT     
model [12], the models developed by GALENKO and 
DANILOV [13,14] and SOBOLEV [15,16]. In BCT 
model, the thermodynamic driving force, the kinetic 
undercooling and Aziz’s solute trapping model [23] were 
introduced to describe high Peclet conditions. However, 
this model could only deal with the deviation from local 
equilibrium state at the solid−liquid interface. By 
introducing the local nonequilibrium diffusion model, the 
dendritic growth models developed by GALENKO and 
DANILOV [13,14] and SOBOLEV [15,16] could 
describe the local nonequilibrium state both at the 
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interface and in bulk liquids. Recently, WANG et al [20] 
further extended the series of models to concentrated 
multi-component alloys. In all of these models, however, 
it is assumed that the interface is isothermal and 
isosolutal. 

During steady-state growth, the normal velocity 
varies along the dendritic interface. This variation would 
lead to different solute partitioning along the interface 
and further lead to a nonisosolutal solid−liquid interface. 
It is also well known both from phase field and 
experiments, that the solute content in a dendritic 
structure has a typical appearance, i.e., high 
concentration along the stem and low concentration on 
both sides. Therefore, it is significant to analyze the 
effect of the interfacial normal velocity dependence of 
solute segregation on the dendritic solidification behavior. 
Recently, a generalized free dendritic growth model was 
developed by solving the classical Fick diffusion 
equation exactly under the boundary condition of 
nonisothermal and nonisosolutal interface [24]. However, 
the effect of local nonequilibrium solute diffusion in bulk 
liquid was not taken into account. In the present work, a 
relatively simple method was proposed to analyze both 
the effects of the interfacial normal velocity dependence 
of solute segregation and the local nonequilibrium solute 
diffusion. An experimental comparison with the available 
experimental data for the Ni−0.7%B (mole fraction) 
alloy was also made. 
 
2 Model 
 

In this section, two independent variables were 
introduced to describe the dendritic morphology during 
steady state solidification. Based on this interfacial 
morphology, the solute trapping model recently 
developed by LI and SOBOLEV [25] was outlined. Then 
taking into account the interfacial driving force, an 
interfacial response function was proposed, 
approximately. From this interfacial response function, 
the tip radius of curvature was derived. Finally, an 
extended free dendritic growth model was obtained for 
binary alloys, which could deal with both the interfacial 
normal velocity dependence of solute segregation and the 
local nonequilibrium solute diffusion. 
 
2.1 Extended solute trapping model 

During steady-state solidification, the dendritic 
morphology could be approximated by a paraboloid of 
revolution [22]. For describing the interfacial 
morphology with the paraboloid of revolution uniquely, 
it is required mathematically to introduce the radius of 
curvature (R) at the dendrite tip. This parameter has been 
widely adopted in previous dendritic models [9−21]. In 
the present work, taking into account the interfacial 

normal velocity dependence of solute partitioning, it is 
not enough to only adopt the parameter R. Here, an angle 
(θ) is introduced. The normal direction at an interface 
element makes the angle θ with respect to the growth 
axis. For steady-state growth at a given interface 
migration velocity V (i.e., tip velocity), there is a critical 
value of the angle θ. This critical angle θ, i.e., the 
maximum angle, is marked by θmax. For θ≥θmax, the 
solid−liquid interface becomes unstable and the 
secondary dendrite arm and necking phenomenon may 
appear. The present model focuses on the range of 
0≤θ≤θmax, which corresponds to the shape preserving part 
of the dendritic interface. Therefore, considering the 
interfacial normal velocity dependence of solute 
segregation, one should use both the parameter R and the 
angle θmax to describe the steady-state shape and the 
boundary. 

Along the dendritic interface from the tip (θ=0) to 
the root (θ=θmax), the normal velocity Vn decreases, 
which could be described by Vn(θ)=Vcosθ due to the 
shape preserving condition. The normal velocity Vn(θ) 
can be regarded as the effective velocity which controls 
the solute redistribution at the interface element marked 
by angle θ. Introducing this dependence of Vn on θ into 
the solute trapping model proposed by SOBOLEV 
[15,16], the solute partition coefficient K could be further 
described as [25] 
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where KE is the equilibrium partition coefficient, VDI is 
the interface diffusive speed and VD is the bulk liquid 
diffusive speed. 

In order to analyze the effect of the interfacial 
normal velocity dependence of solute segregation on the 
dendritic solidification behavior, it is useful to calculate 
the average of partition coefficient )(VK  from the tip 
to the root of the dendrite. For the interface 
approximated by a paraboloid of revolution, )(VK  
could be given as follows [25]: 
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2.2 Interfacial response function 

In previous models, the driving force on 
solidification, i.e., the effective driving free energy 
∆GEFF was calculated with the values for liquid solute 
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