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Abstract: An artificial neural network (ANN) model was developed for simulating and predicting critical dimension dc of glass 
forming alloys. A group of Zr−Al−Ni−Cu and Cu−Zr−Ti−Ni bulk metallic glasses were designed based on the dc and their dc values 
were predicted by the ANN model. Zr−Al−Ni−Cu and Cu−Zr−Ti−Ni bulk metallic glasses were prepared by injecting into copper 
mold. The amorphous structures and the determination of the dc of as-cast alloys were ascertained using X-ray diffraction. The results 
show that the predicted dc values of glass forming alloys are in agreement with the corresponding experimental values. Thus the 
developed ANN model is reliable and adequate for designing the composition and predicting the dc of glass forming alloy. 
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1 Introduction 
 

Metallic glasses have drawn a lot of interests 
because of their superior physical, mechanical and 
chemical properties compared with the corresponding 
crystalline counterparts [1,2]. In particular, the 
development of bulk metallic glasses (BMGs) widens 
their applications and extensively triggers the 
investigation of glass forming ability (GFA) of alloys. 

There are many methods for estimating the GFA of 
glass forming alloys. One includes empirical rule 
proposed by INOUE and ZHANG [3] and the electron 
concentration rule proposed by CHEN et al [4]. These 
rules can not quantitatively estimate the GFA of the 
alloys and even there are opposite cases [5]. The second 
method is the characterization parameters, such as Kgl [6], 
∆Tx [7], Trg [8,9], γ [7, 9], γ* [10] and ν [11]. These 
parameters can be obtained after the amorphous alloy has 
been prepared and/or even there are opposite cases [12]. 
The third method is the mathematical and/or physical 
equation [9,13−16]. For example, INOUE et al [15] 
provided an equation for the estimation of critical 
cooling rate Rc. LU and LIU [9,16] proposed some 

empirical relationships for the prediction of the Rc. 
However, the equation includes some parameters which 
are difficult to obtain and/or their reliability depends on 
the number of the data. CAI et al [17,18] tried to relate 
the Rc with the physical and/or chemical parameters. 
Although better results were obtained and these 
parameters were also easily calculated, these 
relationships can not characterize in the commonality. 
Finally, researchers proposed some models from the 
thermal, topological and physical points of view. For 
example, the composition located at deep eutectic point 
was designed by thermodynamics [19]. It is clear that its 
result would deviate from the practical case because the 
formation of the metallic glass is a non-equilibrium 
solidification procedure. From the topological structure, 
it was found that the atomic size ratio [20], the average 
electronegativity difference [21], and the local packing 
efficiency [22] were strongly related with the GFA of 
alloys. However, these parameters are difficult to be 
calculated for the multi-component alloy. PANG et al 
[23] have recently designed the composition of Ni−Hf 
amorphous alloys based on the cluster whose type and 
magnitude are difficult to be defined. GUO and LIU [24], 
and CAI et al [25] have recently estimated the Rc for the 
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formation of amorphous alloys from the dc from the 
thermodynamic point of view. However, the 
thermodynamic model contains many parameters which 
are difficult to be measured and depend on the 
temperature. Among above mentioned parameters, the dc 
can be directly used to evaluate the GFA of glass 
forming alloys. However, the dc of the glass forming 
alloy can be obtained through a large number of the 
experiments and depends on the experimental condition. 
Can it be quickly and reliably estimated ahead of the 
experiments? 

It is well known that the dc is influenced by physical 
and chemical factors. The relationships between the dc 
and these factors are very complex, resulting in the 
difficult description of the relationships by a 
mathematical and/or physical model. Artificial neural 
network (ANN) technique is thought to be a reliable 
method for the resolution of the complex system and has 
been effectively used for the composition design, 
technology optimization, and performance prediction 
[26−33] due to its perfect performance, such as 
self-organization, self-adaption, strong learning and 
anti-interference capacity. Moreover, the ANN technique 
has been used to predict parameters for the metallic 
glasses and reliable results are obtained. For example, 
KEONG et al [34] established an ANN model for 
reliably predicting the crystallization temperatures of the 
Ni−P based metallic glasses. CAI et al [35−37] 
established ANN models for predicting Trg, ∆Tx and Rc of 
glass forming alloy, respectively. But there are no reports 
for the prediction of the dc of glass forming alloy by 
ANN technique. 

In the present work, a computer model based on 
radial basis function artificial neural network (RBFANN) 
is designed for prediction and simulation of the dc of 
metallic glass. In addition, a group of Zr−Al−Ni−Cu bulk 
metallic glasses are designed and their dc values are 
predicted by the RBFANN model. It is found that the 
predicted dc values are in good agreement with the 
corresponding experimental values. 
 
2 Experimental 

Zr−Al−Cu−Ni and Cu−Zr−Ti−Ni shown in Tables 1 
and 2 alloys with nominal compositions (mole fraction, 
%) were pre-alloyed more than five times by arc melting 
pure metal elements in a Ti-gettered argon atmosphere. 
These master ingots then were surface-polished, 
followed by induction-melting inside quartz tubes in 
argon atmosphere, then injected into copper mold to 
obtain d1−10 mm conical samples. The amorphous 
structures and the determination of the dc of as-cast 
alloys were ascertained using X-ray diffraction (XRD) 
with a XD-3A diffractometer with Cu Kα. 

Table 1 Predicted and tested dc values for Zr−Al−Ni−Cu bulk 
metallic glasses developed in this work 

dc/mm 
Bulk metallic glass 

Tested Predicted
Error/%

Zr54Al13Cu18Ni15 6.5 6.6 1.5 

Zr60.5Al12.1Cu10.95Ni16.45 7.5 8.0 6.7 

Zr61.5Al10.7Cu13.65Ni14.15 5.5 5.8 5.5 

Zr62Al10Cu15Ni13 5.0 5.2 4.0 

Zr62.5Al12.1Cu7.95Ni17.45 7.5 8.1 8.0 

Zr63.5Al10.7Cu10.7Ni15.1 6.0 6.5 8.3 

Zr64Al10.1Cu11.7Ni14.2 5.0 5.2 4.0 

Zr65Al8.7Cu14.4Ni11.9 4.0 4.5 12.5 
 
Table 2 Predicted and tested dc values for Cu−Zr−Ti−Ni bulk 
metallic glasses developed in this work 

dc/mm 
Bulk metallic glass 

Tested Predicted 
Error/%

Cu50Zr40Ti10 2.0 2.3 15.0 

Cu50Zr40Ti9.5Ni0.5 3.0 3.2 6.7 

Cu50Zr40Ti9Ni1 4.0 3.8 5.0 

Cu50Zr40Ti8Ni2 5.0 5.2 4.0 

Cu50Zr40Ti7Ni3 3.0 2.8 6.7 

Cu50Zr40Ti6Ni4 2.0 1.8 10 
 
3 ANN model 
 

Back-propagation artificial neural network 
(BPANN) and radial basis function artificial neural 
network RBFANN are thought to be general methods for 
simulation and prediction modeling. The BPANN has 
stronger generalization capacity, but it has some 
shortcomings. It is difficult to determine learning rate, 
initial weight, objective error, and the numbers of hidden 
layers and of neurons in hidden layer. Moreover, it 
would result in the decrease of convergent rate and even 
be trapped in a local minimum if these parameters can 
not be suitably and coordinately selected. Nevertheless, 
the RBFANN has some merits, such as only one adjusted 
parameter, rapid training procedure and zero error 
[26−29,35−37]. In addition, the RBFANN is 
advantageous of the BPANN for better approximating 
and sorting capacity, and quick learning rate. The base 
functions among the nodes of the hidden layers for the 
RBFANN characterize in locality, indicating that the 
RBFANN is suitable for solving the complex, nonlinear, 
and local problems. Thus, MATLAB 7.0 package 
(Neural Network Toolbox from The Math Works Inc.) 
was used to create the RBFANN model in the present 
work. The modeling procedures are as follows. Firstly, 
the data is collected, analyzed and pre-processed. Then 
the pre-processed data are divided into two kinds of data, 
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