

Available online at www.sciencedirect.com

Trans. Nonferrous Met. Soc. China 21(2011) 388-394

Transactions of **Nonferrous Metals** Society of China

www.tnmsc.cn

First-principles calculation of structural and elastic properties of Pd_{3-x}Rh_xV alloys

WANG Tao-fen^{1, 2}, CHEN Ping¹, DENG Yong-he¹, TANG Bi-yu¹

- 1. Key Laboratory of Low Dimensional Materials and Application Technology of Ministry of Education, Department of Physics, Xiangtan University, Xiangtan 411105, China;
 - 2. Department of Physics, Hunan University of Science and Technology, Xiangtan 411201, China

Received 20 March 2010; accepted 15 July 2010

Abstract: The structural stability, electronic and elastic properties of Pd_{3-x}Rh_xV alloys with L1₂ and D0₂₂ structures were investigated theoretically by the first-principles calculations. The results reveal that with the increase of Rh content, the unit cell volume of Pd_{3-x}Rh_xV alloys with L1₂ and D0₂₂ structures decreases, and the structure of Pd_{3-x}Rh_xV alloys tends to transform from D022 to L12. The elastic parameters such as elastic constants, bulk modulus, shear modulus, elastic modulus, and Poisson ratio, were calculated and discussed in details. Electronic structures were also computed to reveal the underlying mechanism for the stability and elastic properties.

Key words: Pd_{3-x}Rh_xV alloys; first-principle calculations; electronic structure; elastic properties

1 Introduction

The transition metals and their inter-metallic alloys are promising structural materials because of their high melting points, high strength, and good oxidation resistances[1]. In recent years, the inter-metallic alloys have attracted considerable experimental and theoretical interests of many researchers[2]. Experimental results on many inter-metallic alloys reveal that the L12 atomic order is significantly more ductile than the D0₂₂ order, due to the lack of a sufficient number of slip systems in the $D0_{22}$ structure[3]. Consequently, the $L1_2$ alloys are more suitable in structural applications because of their excellent mechanical properties[4]. Whereas the D0₂₂ structure is an ordered tetragonal phase and closely related to the L1₂ structure (by a 1/2 [110] shift on every (001) plane). Through part replacement of high e/atom atoms in D0₂₂-based alloys with low e/atom atoms, the D0₂₂-based alloys can be transformed into the L1₂ structure[5]. Therefore, it is expected that the mechanical

properties of these modified D022-based alloys can be improved because of the availability of more slip systems in the L₁₂ structure[6].

Recent studies proved that it is possible to modify the microstructure of D0₂₂. For example, LIU[7] found that although Ni₃V compound is prone to crystallize into the tetragonal D0₂₂ structure. by adding Co and Fe into Ni₃V, the pseudobinary compound (Ni, Co, Fe)₃V can be stabilized either in the cubic L12 structure or in the tetragonal D022 structure, depending on the Co or Fe content. The reason is that Co or Fe has lower e/atom than Ni, so the addition of Co or Fe to Ni₃V can lower the overall e/atom to an appropriate value. In addition, similar experimental study was performed for Pd₃V and Rh₃V compounds[8]. It was found that the Pd₃V alloys are prone to crystallize into the tetragonal D0₂₂ structure, while the Rh₃V alloys prefer to L1₂ structure[8–9]. Hence, it is expected that substituting Pd by Rh can stabilize the L1₂ structure and further improve the mechanical properties of Pd₃V-based compounds.

Nowadays, ab initio calculations are extensively

Foundation item: Project (50861002) supported by the National Natural Science Foundation of China; Project (0991051) supported by the Natural Science Foundation of Guangxi Province, China; Project (08JJ6001) supported by the Natural Science Foundation of Hunan Province, China; Project (KF0803) supported by Key Laboratory of Materials Design and Preparation Technology of Hunan Province, China; Project (X071117) supported by the Scientific Research Foundation of Guangxi University, China

Corresponding author: TANG Bi-yu; Tel: +86-13187321190; E-mail: tangbiyu@xtu.edu.cn

DOI: 10.1016/S1003-6326(11)60726-7

used to predict the structure, stability and mechanical properties of pseudobinary alloys[10]. In order to get a better understanding of structural stability and mechanical properties of Pd_{3-x}Rh_xV alloys after the substitution of Pd with Rh in Pd₃V alloys, *ab initio* theoretical calculations of Pd_{3-x}Rh_xV inter-metallic compounds are necessary. The main aim of this study is to investigate the effect of substitution of Pd with Rh on the structural stability and mechanical properties, and provide valuable theoretical results to optimize and design the transition metal alloys.

2 Method of calculation

All calculations were done by using the Vienna ab-initio Simulation Package (VASP) program[11], which is based on density functional theory (DFT). The Perdew-Wang (PW91) version of the generalized gradient approximation (GGA)[12] was used to describe the exchange correlation function, and the projector augmented wave (PAW) method[13] was used in the present work. The cutoff energy (E_{cut}) of atomic wave functions was set at 350 eV. The Brillouin zone integrations used Monkhorst-Pack grids [14] of 12×12×12 for L1₂ and 12×12×8 for D0₂₂, respectively. The k-point was increased to $18\times18\times18$ (L1₂) and $18\times18\times12$ (DO₂₂) for the density of states (DOS) geometry optimization was calculation. Atomic performed by full relaxation with the conjugate gradient method until the total energy changes within 10^{-5} eV/atom and the Hellmann-Feynman force on all atomic than 10^{-2} eV/Å. The was Methfessel-Paxton[15] method with a width of 0.2 eV was used for total energy calculations, and the calculations of density of states (DOS) were performed with the linear tetrahedron method with Bloch correction[16-17]. The elastic constants were obtained by calculating the total energy as a function of appropriate lattice deformation[18].

3 Results and discussion

3.1 Structural parameters

The structural optimization was firstly performed with the conjugate-gradient algorithm by full relaxation of unit cell volume and shape as well as the internal atomic positions. The equilibrium lattice constants were obtained from the minimum total energy. The lattice parameters for pure Pd, Rh, V and Pd_{3-x}Rh_xV are reported in Table 1, together with the experimental and other theoretical results in Refs.[19–23]. For pure metal Pd, Rh, V, and alloys Pd₃V (D0₂₂) and Rh₃V (L1₂), the calculated values of lattice constants are in good agreement with the experimental values, implying that

the calculation parameters chosen in this work are valid. In addition, it is noticeable that as the Rh content increases, the unit cell volume of $Pd_{3-x}Rh_xV$ decreases in both the $L1_2$ and $D0_{22}$ structures. Therefore, it can be concluded that the substitution of Pd with Rh leads to the contraction of $Pd_{3-x}Rh_xV$ alloy in both $L1_2$ and $D0_{22}$ structures.

Table 1 Calculated lattice constants, equilibrium volume V together with available experimental data

System _	Calculated data			Experimental data
	a/Å	$c/\mathrm{\AA}$	V /Å 3	a/Å
Pure-Pd(fcc)	3.948			3.889[19]
Pure-Rh(fcc)	3.840			3.802[20]
Pure-V(bcc)	2.977			3.038[21]
$Pd_3V(L1_2)$	3.889	3.889	58.818	
$Pd_3V(D0_{22})$	3.872	7.817	117.195	3.847[22]
$Pd_2RhV(L1_2)$	3.813	3.953	57.473	
$Pd_2RhV(D0_{22})$	3.891	7.633	115.563	
$PdRh_2V(L1_2)$	3.870	3.750	56.163	
$PdRh_2V(D0_{22})$	3.828	7.724	113.184	
$Rh_3V(L1_2)$	3.805	3.805	55.089	3.784[23]
$Rh_3V(D0_{22})$	3.822	7.576	110.668	

3.2 Formation heat and cohesive energy

For the better understanding of the stability of $Pd_{3-x}Rh_xV$ alloys, the calculation of formation heat and cohesive energy was performed[24]. The average formation heat of $Pd_{3-x}Rh_xV$ alloy is defined as[25]:

$$\Delta \overline{H} = \frac{1}{x + y + z} (E_{\text{tot}} - x E_{\text{solid}}^{\text{pd}} - y E_{\text{solid}}^{\text{Rh}} - z E_{\text{solid}}^{\text{V}})$$
 (1)

where $\Delta \overline{H}$ is the average formation heat per atom; E_{tot} is the total energy of the unit cell; $E_{\text{solid}}^{\text{Pd}}$, $E_{\text{solid}}^{\text{Rh}}$ and $E_{\text{solid}}^{\text{V}}$ are the energy per atom of bulk Pd, Rh and V, respectively; x, y and z refer to the numbers of Pd, Rh and V atoms in unit cell.

The obtained formation heat of $Pd_{3-x}Rh_xV$ is shown in Fig.1. From Fig.1, it is found that for $L1_2$ structure, the negative formation heat of $Pd_{3-x}Rh_xV$ becomes lower when x increases from 0 to 3, so the $Pd_{3-x}Rh_xV$ alloys become more stable from the energetic point of view. While for the $D0_{22}$ structure, with the increase of x, the formation heat of $Pd_{3-x}Rh_xV$ is also smaller, indicating that the addition of Rh component in binary alloys (Pd_3V) also increases the stability of $D0_{22}$ crystal structure. In addition, it should be noted that when x is equal to 0 or 1, the heat formation of $D0_{22}$ structure is more negative than that of $L1_2$ structure, so the Pd_3V and Pd_2RhV are prone to $D0_{22}$ structure. When x is 2 or 3, the heat

Download English Version:

https://daneshyari.com/en/article/1638896

Download Persian Version:

https://daneshyari.com/article/1638896

<u>Daneshyari.com</u>