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3D anisotropy simulation of dendrites growth with phase field method
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Abstract: The anisotropy problem of 3D phase-field model was studied, and various degrees of anisotropy were simulated by
numerical calculation method. The results show that with the change of interface anisotropy coefficients, from smooth transition to
the appearance of angle, equilibrium crystals shape morphology has a critical value, and 3D critical value is 0.3. The growth of
dendrites is stable and the interface is smooth when it is less than critical value; the interface is unstable, rolling edge appears and the
growth is discontinuous when it is more than critical value. With the increase of anisotropy coefficients, the dendrites grow faster

under the same condition.
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1 Introduction

The process of metal solidification is affected not
only by macroscopic conditions, but also by
microcosmic internal characteristics. The most important
factor of internal characteristic is the anisotropy
phenomenon at the solid/liquid interface, and it is a key
parameter affecting the evolution of crystal morphology.
As long as free dendrites form stable morphology of tip,
it must have anisotropy. At the same time, the growth
direction and radius of dendrites tip is related to the
anisotropy of interface.

Anisotropy of solid/liquid interface includes
interface energy anisotropy and interface dynamics
anisotropy[1]. KESSLER and LEVINE[2-5] studied the
dendrite solidification process controlled by heat
diffusion and concluded that the interface energy
anisotropy can not only determine the dendrite tip
growth speed by monotone value but also affect the
dendrite morphology evolution and growth stability.
SAITO et al[6] studied the dendrite growth controlled by
the solute diffusion and their results showed that

interface energy anisotropy inevitably existed in dendrite

growth process. The interface dynamics anisotropy[3—5,
7—8] influences the dendrite interface growth speed.
YOUNG et al[9] proposed that the interface dynamics
could be related to the interface crystal orientation.

The simulation of the solidification microstructure
evolution by phase field model has been a hot field for
recent years. In the phase field model[10—15], the effect
of anisotropy could be expressed by the angle function
between the interfacial normal orientation and the
specific orientation. At present, the investigations on
phase field model are mainly focused on the plane of
weak anisotropy (the coefficient of anisotropy is less
than 0.067), and the investigations on the plane of strong
anisotropy are very few[16—18]. Until recently,
EGGLESTON][19] presented the modification method of
strong anisotropy. The phase field model under interface
proposed by LO and KARMAJ[20], ROBERT[21] has
important theoretical and practical value, and it can be
used to qualitatively simulate growth of dendrites. In this
work, the interface energy anisotropy and interface
dynamics anisotropy are introduced to describe the
dendrite growth precisely. And this could actually
describe the evolution of crystal structure and establish
the foundation of studying the crystal growth in complex
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condition.
2 Phase field model

According to Karma’s thin interface theory, phase
field model of non-isothermals pure substance is
constructed based on the entropy function.

Eqn.(1) is the phase field governing
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where ¢ is non-dimensional time, t:t/ (a)2 /D); X is
non-dimensional length, x=x/w ; & is non-
dimensional interface thickness, c=¢/w ; 7=
atD/w* =% /m , and m=uoTy/(DL) are the non-
dimensional dynamics coefficient; W is the parameter
related to the interface thickness. W is selected as
23%X10% m, and the mesh dimension are selected as
dx=dy=0.4, d=0.005.

Pure nickel is selected to do the simulation, and the
calculation parameters are listed in Table 1.

Table 1 Thermo-physical parameters of pure nickel

L/(Jm™) c/(Jm>K™h o/(Jm™?)
235X 10° 5.42%10° 0.37
Dr/(m*s ™" Blsm™) dy/m
1.55%10°° 0.5 0.627X10°°
3 Effect of interface anisotropy on

equilibrium state

In whole description of the simulation of dendrites
growth, the anisotropy must be considered, which exists
on the solid/liquid interface, as shown in Fig.1.

During the growth of 3D dendrites, the forms of
interfacial energy and interfacial dynamics anisotropy in
the phase field are as follows.

The interfacial energy anisotropy:

W(n)y=WAs(n) )

where W(n) is the interfacial energy.

The interfacial dynamics anisotropy:

w(n)= teds(n)’ (3)
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Fig.1 Expression of anisotropy
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where ¢4 is the coefficient of anisotropy, n is the vector
of interface normal, and it is equal to V@/ |V(D| .

Using spherical coordinates, Eqn.(4) can be
expressed as
Ag(n)=1-3¢4 + 454[sin4 6’(cos4 o+ sin? Q)+ cos? ]

)

Interface anisotropy is usually expressed by using
external graphs of Ag(n) and 1/45(n), and Ag(n) is only a
function of € in the planar space. The balanceable shapes
which conform to the Wuff law correspond to the Ag(n)
extremal graphs, which have already been analyzed
above. In the 3D space, Ag(n) is the function of 4 and ¢,
so it is difficult to analyze the lost crystal direction, and
Hoffman and Cahn vector & is used here. The form of

vector & is shown as follows:
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Let y(n)=As(n), n, 0, ¢ is the unit vector in the
spherical coordinates. To the vector & the Gibbs-
Thomson equation which considered the anisotropy is

shown as follows:
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where Ty is the melting point, and Ly is the latent heat.
The balanceable shape can be expressed as
2Ty
r(n)=———"—-¢(n,0,9) ®)
(T =T)Ly

Eqn.(7) indicates that the balanceable shape is
similar to extremal graph &.

Figs.2—6 show the polar maps of Ag(n),1/As(n), &
with the different anisotropy coefficient. It can be seen
that when yp is less than 0.33, all of the interface growth
directions is steady; and the interface is smooth and
continuous. And when y is larger than 0.33, some certain
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