

Contents lists available at ScienceDirect

Materials Letters

journal homepage: www.elsevier.com/locate/matlet

Au/graphene quantum dots/ferroferric oxide composites as catalysts for the solvent-free oxidation of alcohols

Xiaochen Wu^a, Shouwu Guo^{a,*}, Jingyan Zhang^{b,**}

- a Department of Electronic Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240 PR China
- b State Key Laboratory of Bioreactor Engineering, Shanghai Key Laboratory of New Drug Design, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237 PR China

ARTICLE INFO

Article history: Received 3 May 2016 Received in revised form 29 June 2016 Accepted 22 July 2016 Available online 25 July 2016

Keywords: Au/GQDs/Fe₃O₄ composites Oxidation Alcohols Solvent-free reaction Nanocomposites Magnetic materials

ABSTRACT

Nanocomposites of graphene quantum dots and Au nanoparticles (GQDs/Au) are immobilized on the Fe₃O₄ nanoparticles, forming GQDs/Au/Fe₃O₄ ternary composites. The as-prepared ternary composites exhibit superparamagnetic property rendering them easy to be isolated from the reaction mixture. More importantly, they show superb catalytic activity for solvent-free oxidation of VA and other alcohols that contain an aromatic benzyl group, to the corresponding aldehydes exclusively with air as oxidant. The great stability and selectivity of the GQDs/Au/Fe₃O₄ indicate that they might be applicable catalysts for the oxidation of aromatic alcohols.

© 2016 Published by Elsevier B.V.

1. Introduction

Owing to its convenience for separation and recovery through simple magnetic interaction, superparamagnetic Fe₃O₄ nanoparticles have been widely used in catalysis [1]. Also, Fe₃O₄ nanoparticles can be used as supporting matrices for nanosized catalysts [1,2]. We previously found that the composite of Au nanoparticles and graphene quantum dots (Au/GQDs) can catalyze the oxidation of veratryl alcohol (VA) to veratryl aldehyde or veratric acid with efficient conversion and excellent selectivity [3]. However, given the nanoscale size of the Au/GQDs, it is hard to recover them from the liquid reaction mixture except for using ultrahigh speed centrifugation. This limits somehow the practical applications of Au/GQDs as catalyst. To overcome the drawback of the hard separation and recovering of Au/GQDs from the VA oxidation reaction system, and to improve the recyclability, in this work, the Au/GQDs are immobilized on the Fe₃O₄ nanoparticles, obtaining the Au/GQDs/Fe₃O₄ composites with moderate magnetic property, which makes the recovery of the catalyst much convenient. In our previous work, the oxidation product was obtained through a complicated extraction procedure when VA oxidation

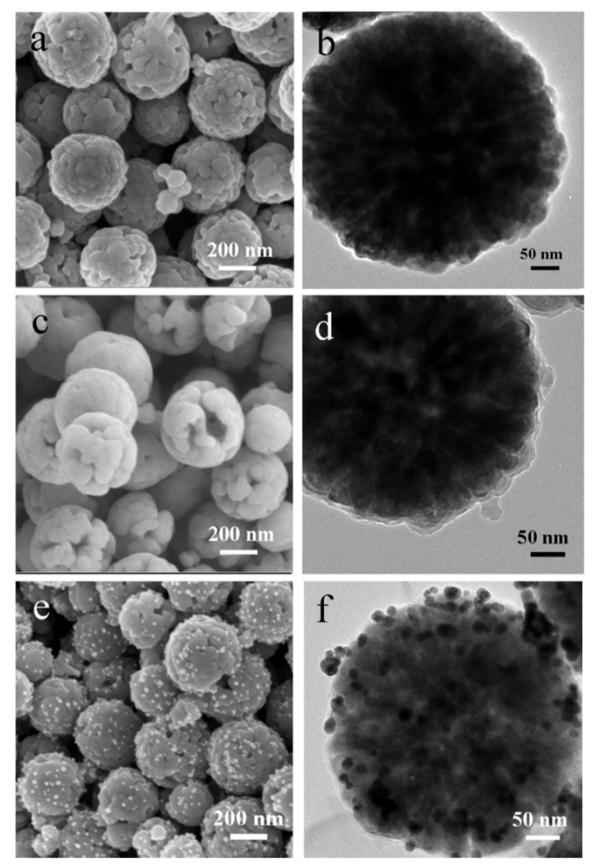
E-mail addresses: swguo@sjtu.edu.cn (S. Guo), jyzhang@ecust.edu.cn (J. Zhang).

http://dx.doi.org/10.1016/j.matlet.2016.07.105

0167-577X/© 2016 Published by Elsevier B.V.

was carried out in aqueous solution, which consumed large quantities of organic solvent and accumulates massive waste. Therefore, the catalytic activity of Au/GQDs/Fe₃O₄ composites in the oxidation of VA and other alcohols with air as oxidant without solvent is explored in this work, since some alcohols are liquid.

2. Experimental


Au/GQDs were prepared as described in our previous work [3,4]. Fe₃O₄ nanoparticles were prepared through a solvothermal procedure [5]. 300 mg of Fe₃O₄ were dispersed in a mixture of ethanol (60 mL), H₂O (1 mL) and NH₃·H₂O (1.5 mL, 28 wt%), 195 µL of tetraethoxysilane and 780 µL of (3-aminopropyl) triethoxysilane were added quickly, mechanically stirred for 6 h to get the modified Fe₃O₄. 1 mg/mL of as-modified Fe₃O₄ nanoparticles was mixed with 0.15 mg/mL 100 mL of Au/GQDs under pH 4 and stirred for 1 h to get the Au/GQDs/Fe₃O₄.

In a typical procedure, 1.2 g of alcohol was added into an open round-bottomed flask and heated to the desired temperature (100 °C) until dissolved. 50 mg of Au/GQDs/Fe₃O₄ and 50 mg of K₂CO₃ were added under vigorous stirring, and kept under 100 °C for 36 h. The Au/GODs/Fe₃O₄ were separated through magnetic absorption, the products were analyzed using GC-MS.

TEM (JEM-2010, Japan), FE-SEM (Zeiss ultra 55, Germany), XRD (D8-Advance, Bruker, Germany), vibrating sample magnetometer

^{*} Corresponding author.

^{**} Corresponding author.

 $\textbf{Fig. 1.} \hspace{0.1cm} \textbf{Fig. 1.} \hspace{0.1cm} \textbf{SEM} \hspace{0.1cm} \textbf{and} \hspace{0.1cm} \textbf{TEM} \hspace{0.1cm} \textbf{images} \hspace{0.1cm} \textbf{of} \hspace{0.1cm} \textbf{Fe}_3\textbf{O}_4 \hspace{0.1cm} \textbf{nanoparticles} \hspace{0.1cm} \textbf{(e, f)}. \hspace{0.1cm} \textbf{nanoparticles} \hspace{0.1cm} \textbf{(c, d)}, \hspace{0.1cm} \textbf{and} \hspace{0.1cm} \textbf{Au/GQDs/Fe}_3\textbf{O}_4 \hspace{0.1cm} \textbf{composites} \hspace{0.1cm} \textbf{(e, f)}. \hspace{0.1c$

Download English Version:

https://daneshyari.com/en/article/1641086

Download Persian Version:

https://daneshyari.com/article/1641086

<u>Daneshyari.com</u>