Contents lists available at ScienceDirect

Materials Letters

journal homepage: www.elsevier.com/locate/matlet

Molybdenum carbide supported by N-doped carbon: Controlled synthesis and application in electrocatalytic hydrogen evolution reaction

Zhiwei Zhong^a, Ning Liu^{a,c}, Hongyu Chen^a, Xionghui Fu^a, Lichun Yang^{b,*}, Qingsheng Gao^{a,*}

^a Department of Chemistry, Jinan University, No. 601 Huangpu Avenue West, 510632 Guangzhou, China

^b School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641, China

^c Guangdong Provincial Key Laboratory of Emergency Test for Dangerous Chemicals, China National Analytical Center, Guangzhou 510070, China

ARTICLE INFO

Article history: Received 31 December 2015 Received in revised form 29 March 2016 Accepted 11 April 2016 Available online 11 April 2016

Keywords: Hydrogen Molybdenum carbides Nitrogen doping Nanocomposites Energy storage and conversion

1. Introduction

Hydrogen, a renewable and clean chemical fuel, is promising to replace fossil fuels in future [1]. To promote the sustainable H₂ production, electrochemical hydrogen evolution reaction (HER) from water has attracted much attention, requiring electrocatalysts being capable of reducing water rapidly at low overpotential [2]. Regarding the high cost and low abundance of platinum [3], noble-metal free electrocatalysts are desired [4–6]. Recently, remarkable progresses have been made in the use of metal carbides [3,4], such as Mo₂C, in which efforts focus on nanostructures with enriched active-sites [7–9]. However, the activity is still limited by its unsatisfied conductivity and the easy aggregation during high-temperature preparation. It's demanded to exploit well-dispersed Mo₂C on conducting supports, e.g. carbon matrix [10]. Noticeably, biomass-derived molecules with various functional groups provide a facile and low-cost way towards carbon-support Mo₂C with tailored composition and phase [11,12], which are important for HER.

Herein, we report the controlled synthesis of molybdenumcarbides (MoC_x) supported by N-doped carbon (CN) and their HER

* Corresponding authors. E-mail addresses: mslcyang@scut.edu.cn (L. Yang), tqsgao@jnu.edu.cn (Q. Gao).

http://dx.doi.org/10.1016/j.matlet.2016.04.089 0167-577X/© 2016 Elsevier B.V. All rights reserved.

ABSTRACT

Exploring noble-metal free electrocatalysts remains a great challenge for hydrogen evolution reaction (HER). Herein, we report the fabrication of molybdenum carbides supported by N-doped carbon (MoC_x/ CN), employing glucose and melamine as precursors to generate conducting supports. The nanosized MoC_x, and its intimate contact with CN, favor the efficient HER. The optimal MoC_x/CN delivers an overpotential (η) of 220 mV to produce a current density (j) of 10 mA cm⁻², and a high j of 72 mA cm⁻² at η = 300 mV in 0.5 M H₂SO₄.

© 2016 Elsevier B.V. All rights reserved.

activity in acidic electrolytes. Employing glucose and melamine as precursors, ultrafine MoC_x nanoparticles (NPs) evenly integrated with CN are accomplished, which are denoted as MoC_x/CN-n, and n indicates the feeding ratio of melamine to glucose ($n_{M/G}$). With a suitable $n_{M/G}$ of 0.05, the MoC_x/CN presents a high activity with an overpotential (η_{10}) of 220 mV to produce a current density (j) of 10 mA cm⁻², and a high j of 72 mA cm⁻² at η =300 mV in 0.5 M H₂SO₄.

2. Experimental

Typically, 0.50 g of ammonium heptamolybdate tetrahydrate with varied glucose and melamine was dissolved in 15.0 mL of water (Table S1 in Supplementary material), and then turned to an autoclave, kept at 200 °C for 24 h. The MoC_x/CN was received after calcining the above solids at 800 °C for 5 h under Ar flow. Detail characterization and HER test were described in Supplementary material.

3. Results and discussion

As illustrated in Fig. 1a, melamine and glucose are polymerized

CrossMark

Fig. 1. (a) Illustration for fabricating MoC_x/CN, and their (b) XRD patterns, (c) Raman spectra and (d) N₂ sorption isotherms with a varied $n_{M/G}$ of (I) 0, (II) 0.03, (III) 0.05, (IV) 0.07, (V) 0.10 and (VI) 0.20.

during hydrothermal processes, resulting in a matrix with abundant hydrophilic groups for loading Mo species. Afterwards, such matrix not only serves as carbon source for generating MoC_x, but also converts to a conducting support during calcination. With an increased $n_{M/G}$ from 0 to 0.2, the N content in the MoC_x/CN increases accordingly (Table S2 in Supplementary material). Their crystalline is investigated by X-ray diffraction (XRD, Fig. 1b). The diffraction peaks at 34.4°, 38.0°, 39.4°, 52.1°, 61.5°, and 69.6°, are assigned to the (100), (002), (101), (102), (110), and (103) of Mo₂C (JCPDS No. 35-0787), respectively. And those at 36.8°, 39.3° and 42.6° correspond to the (006), (103) and (104) of MoC (JCPDS No. 08-0384). Meanwhile, the Raman spectra (Fig. 1c) displays the characteristic D and G bands of carbon at 1347 and 1590 cm^{-1} , respectively, identifying the presence of carbon matrix. It's found that the value of D/G bands increases with the increasing $n_{M/G}$ from 0 to 0.05, indicating the reduced graphitization by N-doping. However, as the excessive N-doping is adopted, such value decreases. Accordingly, the above products show a surface area in the range of 18.9–75.1 m² g⁻¹ (Fig. 1d), which decreases with the increasing $n_{M/G}$.

Taking MoC_x/CN-0.05 for example, scanning electron microscopy (SEM), transmission electron microscopy (TEM), and X-ray photoelectron spectroscopy (XPS) were further conducted. SEM image shows the morphology of NPs (Fig. 2a), analogous to others received with different $n_{M/G}$ (Fig. S1 in Supplementary material). However, as the $n_{M/G}$ is increased to 0.1, the aggregation is visible, consistent with the N₂ sorption isothermals showing the decreasing surface area (Fig. 1d). The TEM image of MoC_x/CN-0.05 (inset of Fig. 2b) shows that Mo₂C NPs (10~20 nm) are well dispersed on amorphous carbon. And, the lattice fringes on a single NP can be assigned to the (101) and (01 $\overline{1}$) of Mo₂C (Fig. 2b).

Furthermore, the presence of Mo, C, N and O is identified in $MoC_x/CN-0.05$ by the XPS survey (Fig. S2 in Supplementary material). In the profile of Mo 3d (Fig. 2c), the peak fitting suggests that there are two states for Mo (+2 and +6). Mo^{6+} results from inactive MoO_3 [13], which usually contaminate Mo_2C surface as exposed to air. The peaks at 228.4 and 231.6 eV are attributed to Mo $3d_{3/2}$ and $3d_{5/2}$ of Mo^{2+} in Mo_2C , respectively, which are believed as the active sites for HER [9]. They are slightly higher than the reported values [13], probably associated with the doping of N and MoC. Meanwhile, for N 1 s (Fig. 2d), the peak at 397.1 eV is ascribed to the N species bonding with Mo [14], and those at 398.3 and 399.4, and 401.2 eV are assigned to pyridinic, pyrrolic and quaternary-type nitrogen, respectively [15]. Obviously, the N-doping is in both Mo_2C and carbon matrix.

Fig. 3a displays the polarization curves of various MoC_x/CN with iR-drop corrections. The bare Mo₂C fabricated via a urea-glass route delivers a poor HER activity because of its bulky dimension and insufficient active-sites (Fig. S3 in Supplementary material). Integrated with carbon matrix, MoC_x/CN presents the obviously improved activity. Particularly, a highest activity featured by a low η_{10} of 220 mV is achieved on MoC_x/CN-0.05. At η =300 mV, a *j* of 72 mA cm⁻² is further delivered, higher than that of other MoC_x/CN. Such high activity also performs among the recently reported noble-metal free catalysts, e.g., carbides, nitrides and phosphide (Table S3 in Supplementary material). Accordingly, the Tafel plots display the consistent order (Fig. 3b), and MoC_x/CN-0.05 shows the lowest η_{onset} (180 mV) and slope (80.4 mV dec⁻¹), which indicates

Download English Version:

https://daneshyari.com/en/article/1641340

Download Persian Version:

https://daneshyari.com/article/1641340

Daneshyari.com