Author's Accepted Manuscript

Superior capacitive performance of reduced graphene hydrogels via dimethyl ketoxime

Ling-Bao Xing, Jing-Li Zhang, Kun Qin, Tian-Zhen Liu, Jin Zhou, Weijiang Si, Shuping Zhuo

www.elsevier.com

PII: S0167-577X(16)30618-8

DOI: http://dx.doi.org/10.1016/j.matlet.2016.04.122

Reference: MLBLUE20719

To appear in: *Materials Letters*

Received date: 16 October 2015 Revised date: 28 March 2016 Accepted date: 16 April 2016

Cite this article as: Ling-Bao Xing, Jing-Li Zhang, Kun Qin, Tian-Zhen Liu, Jil Zhou, Weijiang Si and Shuping Zhuo, Superior capacitive performance o reduced graphene hydrogels via dimethyl ketoxime, *Materials Letters* http://dx.doi.org/10.1016/j.matlet.2016.04.122

This is a PDF file of an unedited manuscript that has been accepted fo publication. As a service to our customers we are providing this early version o the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting galley proof before it is published in its final citable form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain

ACCEPTED MANUSCRIPT

Superior capacitive performance of reduced graphene hydrogels via dimethyl ketoxime

Ling-Bao Xing, Jing-Li Zhang, Kun Qin, Tian-Zhen Liu, Jin Zhou, Weijiang Si, Shuping Zhuo*

School of Chemical Engineering, Shandong University of Technology, Zibo 255049, P.

R. China

*Corresponding author. Tel. /fax: +86 533 2781664. zhuosp_academic@yahoo.com

Abstract

Three-dimensional (3D) reduced graphene hydrogels (RGHs) have been prepared by using dimethyl ketoxime as reducing agents in aqueous solution of graphene oxide (GO) with ammonia. The structure and surface chemistry were analyzed by scanning electron microscopy, Raman, X-ray diffraction, and X-ray photoelectron spectroscopy. The capacitive performance of the RGHs materials are studied in 6 M KOH electrolyte. Benefitting from the 3D porous structures and heteroatom-doped polar pore surface, the as-prepared RGHs materials exhibit high specific capacitances up to 159.8, 215.1 and 163.4 F g⁻¹ at 1 A g⁻¹ for RGHs-1, RGHs-2 and RGHs-5, respectively. More importantly, the materials can maintain high capacitances of 95.6, 155.2 and 118.9 F g⁻¹ at a very high current density of 20 A g⁻¹, the retention rates are 59.8, 72.2 and 72.8% for RGHs-1, RGHs-2 and RGHs-5, respectively.

Download English Version:

https://daneshyari.com/en/article/1641361

Download Persian Version:

https://daneshyari.com/article/1641361

<u>Daneshyari.com</u>