ELSEVIER

Contents lists available at ScienceDirect

Materials Letters

journal homepage: www.elsevier.com/locate/matlet

Synthesis of cubic CuFe₂O₄ nanoparticles by microwave-hydrothermal method and their magnetic properties

Anukorn Phuruangrat a,* , Budsabong Kuntalue b , Somchai Thongtem c , Titipun Thongtem d,e,**

- a Department of Materials Science and Technology, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla 90112, Thailand
- ^b Electron Microscopy Research and Service Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- ^c Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- ^d Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand
- ^e Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand

ARTICLE INFO

Article history: Received 28 October 2015 Received in revised form 22 December 2015 Accepted 2 January 2016 Available online 3 January 2016

Keywords: Cubic CuFe₂O₄ Nanoparticles Magnetic materials

ABSTRACT

Copper ferrite ($CuFe_2O_4$) nanoparticles were prepared in alkaline solutions containing $Cu(NO_3)_2 \cdot 6H_2O$ and $Fe(NO_3)_3 \cdot 9H_2O$ with the pH of 6–12 by microwave-hydrothermal method. The as-prepared products characterized by XRD were specified as cubic $CuFe_2O_4$ phase. Average sizes of the $CuFe_2O_4$ nanoparticles calculated by Scherrer formula are in the same range as those obtained by TEM analysis. FTIR shows main transmittance band at 585 cm $^{-1}$, corresponding to stretching mode of tetrahedral complexes. Saturation magnetization, remanence and coercivity were increased with increasing in the particle-size and crystalline degree of the nanoparticles.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Copper ferrite ($CuFe_2O_4$) has been widely investigated its properties for using as sensors, magnetic materials, anodes, semiconductors and catalysts [1–4]. $CuFe_2O_4$ has two structures (tetragonal and cubic), controlled by preparation conditions [4,5]. Microwave-hydrothermal (MH) method has been used and developed to prepare nanosized compounds because of its fast heating rate, extremely rapid in crystallization of materials and save energy consumption comparing to conventional-hydrothermal (CH) method [6,7]. The objective research was to prepare cubic $CuFe_2O_4$ nanoparticles by MH method. Phase, morphology and magnetic properties were further investigated.

2. Experiment

Typically, $0.005 \text{ mol } \text{Cu}(\text{NO}_3)_2 \cdot 6\text{H}_2\text{O}$ and 0.010 mol Fe $(\text{NO}_3)_3 \cdot 9\text{H}_2\text{O}$ were dissolved together in 40 ml deionized water to

form solution under magnetic stirring until the reactants were completely dissolved. Each of the solutions was adjusted the pH to 6, 8, 10 and 12 by adding of 3 M KOH dropwise and separately loaded into a 100 ml TFM fluoropolymer lining vessel. The vessels were tightly closed and transferred in a CEM Mars-5 microwave oven. The system was heated by 300 W microwave from room temperature (T_R) to 150 °C for 20 min, held at this temperature for 60 min and cooled to T_R . All products were filtered, washed with deionized water and ethanol, and dried at 80 °C for 24 h.

3. Results and discussion

XRD patterns (Fig. 1a) of CuFe₂O₄ prepared in the solutions with different pH values by MH method show peaks at 2θ of 30.15°, 35.54°, 37.20°, 43.19° and 57.06° which were indexed to the (220), (311), (222), (400) and (511) planes of cubic CuFe₂O₄ (JCPDS database no 25-0283) [8]. Impurities such as CuO, Cu₂O, Fe₂O₃ and others were not detected in these samples. According to the previous report, pure CuFe₂O₄ was prepared by CH method at 160 °C for 30 h [9]. The MH is a one-step method, which takes shorter reaction time at lower temperature and consumes less energy than the CH one. Upon increasing in the basicity of the solutions (pH: $6 \rightarrow 12$), intensities of the diffraction peaks became strengthened and their widths were narrowed, implying that

^{*} Corresponding author.

^{**} Corresponding author at: Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand.

E-mail addresses: phuruangrat@hotmail.com (A. Phuruangrat), ttpthongtem@yahoo.com (T. Thongtem).

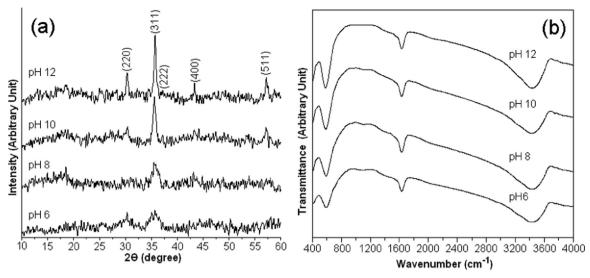


Fig. 1. (a) XRD patterns and (b) FTIR transmittance of CuFe₂O₄ prepared in different solutions.

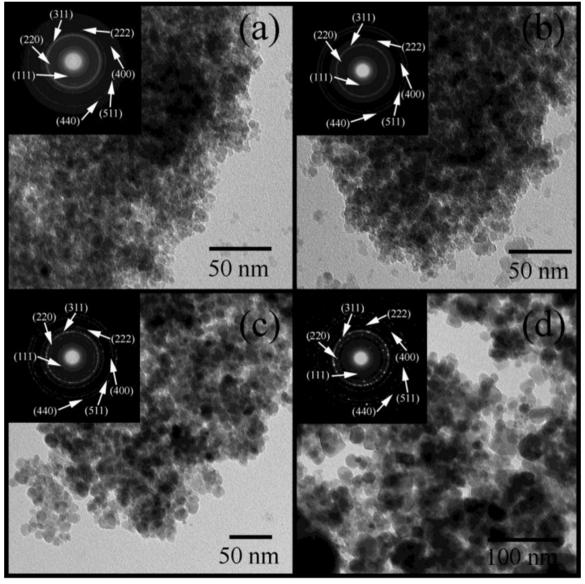


Fig. 2. TEM images and SAED patterns of CuFe₂O₄ prepared in different solutions with the pH of (a-d) 6, 8, 10 and 12, respectively.

Download English Version:

https://daneshyari.com/en/article/1642077

Download Persian Version:

https://daneshyari.com/article/1642077

<u>Daneshyari.com</u>