ELSEVIER

#### Contents lists available at ScienceDirect

### Materials Letters

journal homepage: www.elsevier.com/locate/matlet



# Luminescence and energy transfer of $La_5Si_2BO_{13}$ : A ( $A=Ce^{3+}/Tb^{3+}/Eu^{3+}/Sm^{3+}$ ) phosphors under UV excitation



Xinguo Zhang a,c,\*, Jilin Zhang b, Menglian Gong c

- <sup>a</sup> School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
- <sup>b</sup> College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
- <sup>c</sup> State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275. China

#### ARTICLE INFO

Article history: Received 7 November 2014 Accepted 11 December 2014 Available online 19 December 2014

Keywords: Luminescence Phosphor Color-tunable

#### ABSTRACT

Ce<sup>3+</sup>, Tb<sup>3+</sup> co-doped and Ce<sup>3+</sup>, Tb<sup>3+</sup>, Eu<sup>3+</sup>/Sm<sup>3+</sup> tri-doped La<sub>5</sub>Si<sub>2</sub>BO<sub>13</sub> (LSBO) were synthesized by solid-state method. Green Tb<sup>3+</sup> emission and red Eu<sup>3+</sup>/Sm<sup>3+</sup> emission could be efficiently sensitized by Ce<sup>3+</sup>. Using Tb<sup>3+</sup> concentration that predicted by empirical saturation distance ( $R_c$ =6-7Å), a terbium bridge is successfully formed and efficient Ce<sup>3+</sup>  $\rightarrow$  Tb<sup>3+</sup>  $\rightarrow$  Eu<sup>3+</sup>/Sm<sup>3+</sup> energy transfer is realized in LSBO lattice. Under UV excitation, La<sub>5</sub>Si<sub>2</sub>BO<sub>13</sub>: Ce<sup>3+</sup>, Tb<sup>3+</sup>, Eu<sup>3+</sup>/Sm<sup>3+</sup> system can achieve tunable emission from blue through yellowish-green to red by changing the Tb<sup>3+</sup>/Eu<sup>3+</sup>/Sm<sup>3+</sup> concentration.

Crown Copyright © 2014 Published by Elsevier B.V. All rights reserved.

#### 1. Introduction

 ${
m Tb}^{3+}/{
m Eu}^{3+}/{
m Sm}^{3+}$  ions, which possess linear green and red emission with superior color purity, are ideal activator ions for novel UV-excited luminescent materials. Unfortunately, the low oscillator strength and narrow line width of  ${
m Tb}^{3+}/{
m Eu}^{3+}/{
m Sm}^{3+}$  4f-4f absorption transitions leads to a weak UV absorption, which greatly limit their luminescent performance [1]. Thus, it is necessary to find sensitizers for  ${
m Tb}^{3+}/{
m Eu}^{3+}/{
m Sm}^{3+}$  luminescence that could achieve strong excitation bands at UV region [2]. Due to its strong 4f-5f absorption in UV region,  ${
m Ce}^{3+}$  ion can be used as a sensitizer for  ${
m Tb}^{3+}/{
m Eu}^{3+}/{
m Sm}^{3+}$  ions to obtain strong green and red emission. However, unlike greenemitting  ${
m Tb}^{3+}$  ion, red-emitting  ${
m Eu}^{3+}/{
m Sm}^{3+}$  ion cannot be directly sensitized by  ${
m Ce}^{3+}$  ions due to metal-metal charge transfer (MMCT), that is,  ${
m Ce}^{3+}+{
m Eu}^{3+}$  ( ${
m Sm}^{3+}+{
m Sm}^{4+}+{
m Eu}^{2+}$  ( ${
m Sm}^{2+}$ ), which quenches the luminescence of the sensitizer and makes the co-doped samples non-luminescent [3,4].

Aiming at realization of the sensitization effect between  $Ce^{3+}$ - $Eu^{3+}/Sm^{3+}$ , circumvention of MMCT quenching is essential. As reported by Wen et al., a terbium bridge could be introduced to sensitize  $Eu^{3+}/Sm^{3+}$  ions and enhance the narrowband red emission with  $Ce^{3+}$  broadband UV absorption [5]. In order to achieve sufficient energy transfer, a host with compact structure is preferred since  $Tb^{3+}$ - $Eu^{3+}$  energy transfer process is a short-distance interaction. Apatite-structure  $La_5Si_2BO_{13}$  (LSBO) has a

relative compact structure [space group: P63/m, a=b=9.558 Å, c=7.212 Å, V=571.09 Å<sup>3</sup>, Z=2] [6], which makes it suitable host to realize an efficient  $Ce^{3+} \rightarrow Tb^{3+} \rightarrow Eu^{3+}/Sm^{3+}$  energy transfer. In this article, we investigate the luminescence properties as well as the energy-transfer process of  $Ce^{3+}$ ,  $Tb^{3+}$  co-doped and  $Ce^{3+}$ ,  $Tb^{3+}$ ,  $Eu^{3+}/Sm^{3+}$  tri-doped  $La_5Si_2BO_{13}$ .

#### 2. Experimental

All samples La<sub>5(1-x-y-z)</sub>Si<sub>2</sub>BO<sub>13</sub>: xCe<sup>3+</sup>, yTb<sup>3+</sup>, zEu<sup>3+</sup>/Sm<sup>3+</sup> (x=0.01, y=0.02  $\sim$ 0.50, z=0.01) were synthesized by solid-state method. The stoichiometric amounts of raw materials SiO<sub>2</sub> (A.R.), H<sub>3</sub>BO<sub>3</sub> (A.R.) (10% excessive as flux), La<sub>2</sub>O<sub>3</sub> (A.R.), CeO<sub>2</sub> (A.R.), Tb<sub>4</sub>O<sub>7</sub> (A.R.), Eu<sub>2</sub>O<sub>3</sub> (A.R.) and Sm<sub>2</sub>O<sub>3</sub> (A.R.) were thoroughly mixed by grinding. They were sintered at 1500 °C in a reducing (5% H<sub>2</sub>+95% N<sub>2</sub>) atmosphere for 5 h. X-ray powder diffraction (XRD) patterns were recorded on a Rigaku D/max-IIIA diffractometer with Cu  $K_{\alpha}$  radiation ( $\lambda$ =1.5403 Å). Photoluminescent excitation (PLE) and emission (PL) spectra and decay lifetimes were recorded on an EDINBURGH FLS920 Combined Fluorescence Lifetime & Steady State Spectrometer.

#### 3. Results and discussion

Fig. 1a shows the crystal structure of  $La_5Si_2BO_{13}$  together with the coordination environments of the  $La^{3+}$  sites. In  $La_5Si_2BO_{13}$  host, there are two kinds of  $La^{3+}$  sites which are named La(1) and

<sup>\*</sup>Corresponding author at: State Key Laboratory of Optoelectronic Materials and Technologies, School of Chemistry and Chemical Engineering, Sun Yat-Sen University, Guangzhou 510275, China.

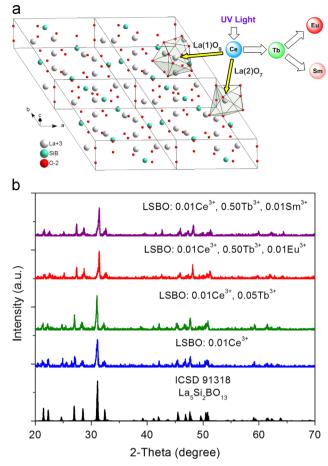



Fig. 1. The unit cell structure of  $La_5Si_2BO_{13}$  (a) and the typical XRD patterns of phosphors (b).

La(2). La(1) is nine-fold coordinated 4f site with  $C_3$  point symmetry and La(2) is 7-coordinated 6h site with  $C_s$  point symmetry. The trivalent rare-earth ion  $(Ce^{3+}/Tb^{3+}/Eu^{3+}/Sm^3)$  as the dopant is expected to substitute the La<sup>3+</sup> sites in LSBO host lattice on account of the same valence and close ionic radius between Ln<sup>3+</sup> and La<sup>3+</sup>.

Fig. 1b presents the XRD patterns of representative samples LSBO:  $0.01\text{Ce}^{3+}$ , LSBO:  $0.01\text{Ce}^{3+}$ ,  $0.05\text{Tb}^{3+}$ , LSBO:  $0.01\text{Ce}^{3+}$ ,  $0.5\text{Tb}^{3+}$ ,  $0.01\text{Eu}^{3+}$  and LSBO:  $0.01\text{Ce}^{3+}$ ,  $0.5\text{OTb}^{3+}$ ,  $0.01\text{Sm}^{3+}$ , respectively. It is found that all the diffraction peaks can be indexed to standard data of hexagonal-phase  $\text{La}_5\text{Si}_2\text{BO}_{13}$  (ICSD 91318) [6]. Besides, the diffraction peaks shift slightly to the higher angle side with further doping of  $\text{Ce}^{3+}/\text{Tb}^{3+}/\text{Eu}^{3+}/\text{Sm}^{3+}$ , which is due to the smaller ionic radius of  $\text{Ce}^{3+}/\text{Tb}^{3+}/\text{Eu}^{3+}/\text{Sm}^{3+}$  ion (1.01/0.92/0.95/0.96 Å) compared to  $\text{La}^{3+}$  (1.03 Å). The results suggest that dopant ions were effectively incorporated into the  $\text{La}^{3+}$  site along with contraction of the unit cell.

The PLE and PL spectra of LSBO:  $0.01\text{Ce}^{3+}$  sample is shown in Fig. 2a. Under 280 nm excitation, LSBO:  $0.01\text{Ce}^{3+}$  presents a blue emission band with an emission peak locates at 418 nm. Corresponding PLE spectrum consists of two broad excitation bands at 280 and 345 nm, which nearly cover the whole UV region and are assigned to  $\text{Ce}^{3+}$  4f-5d allowed transitions.

Fig. 2b depicts the spectral characteristics of LSBO:  $0.01\text{Ce}^{3+}$ ,  $0.05\text{Tb}^{3+}$ . The PLE spectrum monitored with  ${}^5D_4 \rightarrow {}^7F_5$  emission (542 nm) of the Tb<sup>3+</sup> ion shows not only the Tb<sup>3+</sup> spin-allowed  $4f^8-4f^75d^1$  transition band at 248 nm, but also the Ce<sup>3+</sup> strong absorption band centered at 280 and 345 nm. The presence of the Ce<sup>3+</sup> excitation band suggests energy transfer from Ce<sup>3+</sup> to Tb<sup>3+</sup>. Under the 280 nm excitation (the characteristic adsorption peak of

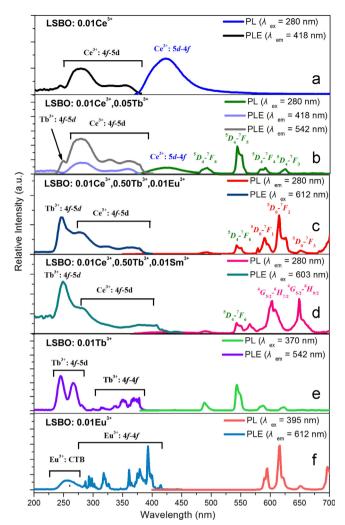



Fig. 2. The PLE and PL spectra of representative LSBO: Ce<sup>3+</sup>, Tb<sup>3+</sup>, Eu<sup>3+</sup>/Sm<sup>3+</sup>

Ce<sup>3+</sup>), LSBO: 0.01Ce<sup>3+</sup>, 0.05Tb<sup>3+</sup> sample exhibits the sensitized Tb<sup>3+</sup> green  $^5D_4$ – $^7F_J$  (J=6, 5, 4, 3) emission along with weaken Ce<sup>3+</sup> blue emission.

As seen in Fig. 2c, PLE spectrum of LSBO: 0.01Ce<sup>3+</sup>, 0.50Tb<sup>3+</sup>. 0.01Eu<sup>3+</sup> monitoring Eu<sup>3+</sup> emission at 613 nm has similar profile with the PLE band of LSBO: Ce<sup>3+</sup>, Tb<sup>3+</sup>, which covers the broad UV range (200–400 nm) and gives direct evidence of sensitized Eu<sup>3+</sup> by  $Ce^{3+} \rightarrow Tb^{3+} \rightarrow Eu^{3+}$  energy transfer. The strong absorption peak at 248 nm is related to the spin-allowed  $4f^8 \rightarrow 4f^75d^1$  ( $\Delta S = 0$ ) transition of Tb<sup>3+</sup>, the intensity of which is greatly enhanced because of the relative high Tb<sup>3+</sup> content. Similar phenomenon could be found in  $Sr_3Y(PO_4)_3$ :  $Eu^{2+}$ ,  $Tb^{3+}$ ,  $Sm^{3+}$  system [7]. Under 280 nm excitation, sensitized Eu<sup>3+</sup> red emission with main peaks at 591, 614, 620 nm is found, which are assigned to  ${}^5D_0 \rightarrow {}^7F_I$  (I=1, 2, 3) transitions. Due to efficient  $Ce^{3+} \rightarrow Tb^{3+} \rightarrow Eu^{3+}$  energy transfer, both  $Ce^{3+}$  blue emission and Tb<sup>3+</sup> green emission are hardly observed. The dominant red emission peak at 613 nm is attributed to Eu<sup>3+ 5</sup> $D_0 \rightarrow {}^7F_2$  transition, because Eu<sup>3+</sup> ions are occupying non-centrosymmetric La sites in La<sub>5</sub>Si<sub>2</sub>BO<sub>13</sub> host.

Fig. 2d shows the PLE and PL spectrum for LSBO:  $0.01\text{Ce}^{3+}$ ,  $0.50\text{Tb}^{3+}$ ,  $0.01\text{Sm}^{3+}$ . Under  $\text{Ce}^{3+}$  excitation at 280 nm, intense red emission of  $\text{Sm}^{3+}$   $^4G_{5/2} \rightarrow ^6H_J$  (J=5/2,7/2,9/2) transitions are exhibited in PL spectrum. The PLE spectrum that monitoring  $\text{Sm}^{3+}$  red emission at 603 nm consists of strong broad bands with significant contribution from both  $\text{Ce}^{3+}$  and  $\text{Tb}^{3+}$ , indicating that the successful sensitization of  $\text{Sm}^{3+}$  ion emission by  $\text{Ce}^{3+}$  using  $\text{Tb}^{3+}$  bridge in the LSBO lattice.

## Download English Version:

# https://daneshyari.com/en/article/1642749

Download Persian Version:

https://daneshyari.com/article/1642749

<u>Daneshyari.com</u>