Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/matlet

Effects of Mg_{2.05}SiO_{4.05} addition on phase structure and microwave properties of MgTiO₃-CaTiO₃ ceramic system

Hao Li^{*}, Bin Tang^{*}, Yingxiang Li, Zhenjun Qing, Shuren Zhang

National Engineering Research Center of Electromagnetic Radiation Control Materials, University of Electronic Science and Technology of China, Chengdu 610054, China

ARTICLE INFO

Article history: Received 2 August 2014 Accepted 18 January 2015 Available online 24 January 2015

Keywords: Electroceramics Dielectrics

ABSTRACT

The (1-x) MgTiO3-xMg_{2.05}SiO_{4.05}-0.06CaTiO₃ ceramic system composite dielectric ceramics with different amounts of Mg_{2.05}SiO_{4.05} addition were prepared by solid state reaction method. The results indicated that exceeding Mg in Mg_{2.05}SiO_{4.05} not only hold back the formation of MgSiO₃ but also inhibits the formation of second phase MgTi₂O₅. A new microwave dielectric material, 0.8MgTiO₃-0.2Mg_{2.05}SiO_{4.05}-0.06CaTiO₃ ceramics sintered at 1380 °C for 4 h had optimal dielectric properties (ε_r =15.4, Q × f=72,705 GHz and τ_f = -1.45 ppm/°C) which satisfied microwave applications in resonators, filters and antenna substrates.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Microwave dielectric materials play a key role in global society with a wide range of applications from terrestrial and satellite communication including software radio, GPS, and DBS TV to environmental monitoring via satellites [1]. The important characteristics required for a dielectric material used in millimeter-wave telecommunication systems are: (a) high dielectric constant (ε_r); (b) low dielectric loss (tan δ) and (c) low temperature coefficient of resonant frequency (τ_f).

MgTiO₃ has an ilmenite-type structure with ε_r =17, $Q \times f$ = 160,000 GHz at 7 GHz and τ_f = – 50 ppm/°C. Mg₂TiO₄ ceramic has a spinel structure and Belous et al. first reported its microwave dielectric properties (ε_r =14, $Q \times f$ = 150,000 GHz, and τ_f = – 50 ppm/°C) [2]. When MgO and TiO₂ are reacted with a stoichiometric ratio 1:1, the MgTi₂O₅ phase, having a much lower $Q \times f$ (~47,000 GHz) associated with an ε_r of 17.4 and a τ_f of –66 ppm/°C, was formed as an intermediate phase and is difficult to completely eliminate from the MgTiO₃ sample prepared by the mixed oxide route [3].

Tsunooka et al. [4] reported that forsterite (Mg₂SiO₄) show excellent microwave dielectric properties (ε_r =6.8, $Q \times f$ =270,000 GHz, and τ_f = -67 ppm/°C). However, the synthesis of a homogeneous Mg₂SiO₄ ceramic is known to be difficult because of the presence of the MgSiO₃ secondary phase, which is formed easily during the sintering of Mg₂SiO₄ ceramics. Song et al. [5] reported that the appearance of a MgSiO₃ secondary phase could be effectively suppressed by adjusting the nonstoichiometric, and a single-phase forsterite structure was obtained in the present ceramics with Mg/Si ratios of 2.05.

In order to obtain a kind of MgTiO₃–CaTiO₃ ceramic with ε_r =10–17 and low dielectric loss, (1–*x*) MgTiO₃–*x*Mg_{2.05}SiO_{4.05}–0.06CaTiO₃ composite dielectric ceramics were prepared and characterized, and the effects of Mg_{2.05}SiO_{4.05} addition amount on the microstructure and dielectric properties as well as the sintering temperature of ceramics were investigated.

2. Experimental procedures

The samples were separately by conventional solid-state method from individual high-purity oxide powders (> 99.9%): MgCO₃, SiO₂, CaCO₃, and TiO₂. The starting materials were mixed according to the desired stoichiometry Mg_{2.05}SiO_{4.05}, MgTiO₃ and CaTiO₃. The powders were grounding distilled water for 12 h in a ball mill with agate balls. The mixtures of Mg_{2.05}SiO_{4.05}, MgTiO₃ and CaTiO₃ powders were dried and calcined at 1250 °C, 1150 °C and 1150 °C, respectively, for 3 h in air. After calcinations, the calcined powders were mixed according to the molar fraction (1-x) MgTiO₃-xMg_{2.05}SiO_{4.05}-0.06CaTiO₃ (x=0, 0.2, 0.4, 0.6, 0.8) and then re-milled for 12 h. The fine powder with 3 wt% of a 10% solution of PVA as a binder was pressed into pellets with dimensions of 15 mm in diameter and 7.5 mm in thickness under the pressure of 200 kg/cm². These pellets were sintered at temperatures of 1330–1450 °C for 4 h in air.

The bulk densities of the sintered samples were measured by the Archimedes method. The phase composition was identified by X-ray diffraction (XRD) using Cu K α radiation (Philips x'pert Pro MPD, Netherlands). Microstructure observation was conducted on the surface of samples by using scanning electron microscopy

^{*} Corresponding authors. Tel.: +86 28 8320 8048; fax: +86 28 83202139. *E-mail addresses:* haouestc@gmail.com (H. Li), tangbin@uestc.edu.cn (B. Tang).

(SEM, FEI Inspect F). The dielectric characteristics at microwave frequencies were measured by the Hakki-Coleman dielectric resonator method in the TE011 mode using a network analyzer (Agilent Technologies E5071C, the United States). [12] The temperature coefficient of resonant frequency (τ_f) was determined from the difference between the resonant frequency obtained at 25 °C and 85 °C using the equation: $\tau_f = (f_{t_2} - f_{t_1})/(f_{t_1} \times (t_2 - t_1))$, where f_{t_1} and f_{t_2} are the resonant frequencies at $t_1=25$ °C and $t_2 = 85 \,^{\circ}\text{C}$, respectively.

3. Results and discussion

MgSiO₃ was difficult to eliminate according to stoichiometric solid-phase sintering methods. [6] Fig. 1(a) shows the XRD patterns of Mg_{2.05}SiO_{4.05} powders calcined at 1250 °C in air for 3 h. An MgO secondary phase was detected in the powders and protoenstatile MgSiO₃ was not found. These results are consistent with those of Song [5]. Fig. 1(b) shows the XRD patterns of 0.94MgTiO₃-0.06CaTiO₃ ceramic system sintered at 1380 °C for 4 h. It givens mixed phase of MgTiO₃ phase as the main phase associated with CaTiO₃. Moreover, a second MgTi₂O₅ was also detected, which would lead to a degradation in dielectric properties. It was attributed to that MgTi₂O₅ is usually formed as an intermediate phase and is difficult to eliminate completely from the sample when MgO and TiO₂ reacts in a 1:1 molar ratio.

Fig. 1(c) shows the XRD patterns of MgTiO₃-xMg_{2.05}SiO_{4.05}-0.06CaTiO₃ (x=0.2, 0.4, 0.6, 0.8) ceramics sintered at 1380 °C. It can be seen that the major phases of ceramics were MgTiO₃, Mg₂TiO₄, Mg₂SiO₄ and CaTiO₃, and no MgTi₂O₅, MgSiO₃ and MgO were detected. The reflection peaks of Mg₂SiO₄ phase and Mg₂TiO₄ phase tend to higher with increasing the x value, however, the reflection peaks of the MgTiO₃ phase tend to lower. When x=0.8, MgTiO₃ was not found. Exceeding Mg will hold back the formation of MgTi₂O₅ and Mg-rich cause the formation of Mg₂TiO₄ phase. The reaction can be expressed as follows:

$$MgTi_2O_5 + MgO \rightarrow MgTiO_3 \tag{1}$$

$$MgTiO_3 + MgO \rightarrow Mg_2TiO_4$$
 (2)

Fig. 2 shows the SEM photographs for MgTiO₃-xMg_{2.05}SiO_{4.05}- $0.06CaTiO_3$ ceramics with (a) x=0.2, (b) x=0.4, (c) x=0.6 and (d) x=0.8 sintered at 1380 °C for 4 h. Dense forsterite ceramics have been reported as being hard to obtain [6], and the poor sinter ability is considered to be due to the presence of MgSiO₃ and MgO secondary phases. In the present work, however, good densification is achieved in nonstoichiometric forsterite Mg₂SiO₄ ceramics, and a fine-grain structure is obtained.

For further determining the distribution of the elements, the energy dispersive X-ray analysis (EDX) was used in Fig. 2. According to the quantitative analysis as shown in Table 1, it is evident that the grains of A is MgTiO₃, B is Mg₂TiO₄, C is Mg₂SiO₄ and D is CaTiO₃. The mixture phases observed in the microstructure supported the phases composition detected in the X-ray diffraction patterns as shown in Fig. 1(c).

The apparent density of MgTiO₃-xMg_{2.05}SiO_{4.05}-0.06CaTiO₃ ceramics sintered at 1380 °C for 4 h is shown in Fig. 3(a). There was a steady decrease in the apparent density of samples when x was increased from 0 to 0.8 and it was because Mg₂SiO₄ (3.21 g/cm³) and Mg_2TiO_4 (3.54 g/cm³) with lower density than $MgTiO_3$ (3.89 g/cm³) appeared more and more in the system. For the dielectric constant (ε_r) as shown in Fig. 3(b), it constantly dropped from 21.7 to 9.1 because Mg₂SiO₄ (ε_r =6.8) and Mg₂TiO₄ (ε_r =14) with a lower ε_r than MgTiO₃ $(\varepsilon_r = 16)$ became more and more in the system. As shown in Fig. 3(c), the quality factor values only increased from 58,761 GHz to 76,789 GHz while x was varying from 0 to 0.6, and thereafter, the quality factor

Fig. 1. Shows the XRD patterns of (a) $Mg_{2.05}SiO_{4.05}$ powders calcined at 1250 $^\circ C$ in air for 3 h, (b) 0.94MgTiO₃-0.06CaTiO₃ sintered at 1380° $^{\circ}$ C for 4 h, (c) (1-x) MgTiO₃-xMg_{2.05}SiO_{4.05}-0.06CaTiO₃ (x=0.2, 0.4, 0.6, 0.8) ceramics sintered at 1380° °C.

Fig. 2. Shows the SEM photographs for (1-x) MgTiO3-xMg_{2.05}SiO_{4.05}-0.06CaTiO₃ ceramics with (a) x=0.2, (b) x=0.4, (c) x=0.6 and (d) x=0.8 sintered at 1380° °C for 4 h.

Table 1
The energy dispersive X-ray analysis (EDX) data of ceramics corresponding to Fig. 2

Spot	Mg (at%)	Si (at%)	Ca (at%)	Ti (at%)	O (at%)
A B C D	33.34 42.94 39.38 3.68	0 0 18.12 0	0 0 0 22.49	30.03 24.71 0 22.96	36.34 32.95 42.37 50.87

values started to decline to 73,136 GHz at x=0.8. The increase of $Q \times f$ value should be mainly attributed to increase of high $Q \times f$ value phase Mg₂SiO₄ (270,000 GHz), but the decrease might be related to the increase of Mg2TiO4 phase which need more high sintering

Download English Version:

https://daneshyari.com/en/article/1642961

Download Persian Version:

https://daneshyari.com/article/1642961

Daneshyari.com