ELSEVIER

Contents lists available at ScienceDirect

Materials Letters

journal homepage: www.elsevier.com/locate/matlet

Low-temperature densification of Mg₂SnO₄ ceramics with LiF-Fe₂O₃-V₂O₅ additive

Juehui Zhou^a, Nuoxin Xu^a, Qilong Zhang^{a,*}, Di Zhou^b, Xin Tang^a, Hui Yang^a

- ^a Department of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
- ^b Electronic Materials Research Laboratory, Key Laboratory of the Ministry of Education & International Center for Dielectric Research, Xi'an Jiaotong University, Xi'an 710049, China

ARTICLE INFO

Article history: Received 21 July 2014 Accepted 11 October 2014 Available online 22 October 2014

Keywords: Sintering Microstructure Dielectrics Electroceramics Electrical properties

ABSTRACT

The effects of LiF-Fe₂O₃-V₂O₅ (LFV) additive on the sinterability, microstructure, phase composition, and microwave dielectric properties of Mg₂SnO₄ is investigated. By adding LFV additive, the densification temperature of Mg₂SnO₄ ceramics is significantly lowered from 1550 °C to 1050 °C. XRD shows all doped samples are single-phase Mg₂SnO₄ with *Fd3m* space group. TEM image and EDS spectra indicate that an amorphous phase is formed in the intergranular region, and Fe³⁺ ions presents in Mg₂SnO₄ matrix. Mg₂SnO₄ with 4 wt.% LFV additive sintered at 1050 °C provides the attractive combination of dense microstructure and excellent dielectric properties: $\varepsilon_{\rm r}$ =7.90, Q×f=41,400 GHz and τ_f = -82 ppm/°C. In addition, the ceramic is compatible with Ag/Pd electrodes, suggesting the potential application in millimeterwave communication.

1. Introduction

In recent years, with the rapid development of wireless and mobile communication, high-quality microwave dielectric ceramics have significantly attracted scientific and commercial attention. In the case of microwave substrate application and higher frequency applications (such as millimeter wave or higher), dielectric ceramics with low dielectric constant ($\varepsilon_r \leq 10$) (low-K) are preferred for integrated circuits [1–3]. Up till now, several kinds of low-K materials, such as Mg₃B₂O₆, Al₂O₃, Mg₂SiO₄, Mg₂SnO₄, and Zn₂GaO₄, have been investigated [2,4-6], among which spinel Mg₂SnO₄ is a relatively new candidate with low dielectric constant (ε_r =8.41) and high quality factor (Q \times f=55,100 GHz for pure Mg₂SnO₄ sintered at 1550 °C) [7]. Recently, the microwave dielectric properties were further enhanced by ion substitution of Mg(II) with Zn(II), Ni(II) or Co(II) [8-10], and Mgnonstoichiometry [11]. However, the sintering temperatures of these Mg₂SnO₄-based ceramics are rather high ($T_{\text{sint}} \ge 1550 \,^{\circ}\text{C}$), making them unavailable for electrode co-fire process [12]. To the best of our knowledge, few investigations on the low-temperature sintering of Mg₂SnO₄-based ceramics have been reported.

In this work, LiF-Fe₂O₃-V₂O₅ (LFV) additive is employed to lower the sintering temperature of Mg₂SnO₄ ceramic. The sintering mechanism and corresponding effects of additive on the microstructure and dielectric properties of Mg₂SnO₄ ceramics are studied. In addition, the co-firing behavior of ceramic with Ag/Pd electrode is investigated.

2. Experimental

High-purity powders of MgO ($\geq 99.9\%$), SnO₂ ($\geq 99.95\%$), LiF ($\geq 98\%$), Fe₂O₃ ($\geq 99\%$), and V₂O₅ ($\geq 99\%$) were used as precursors. Mg₂SnO₄ was prepared by calcining MgO and SnO₂ powder mixtures at 1,200 °C for 4 h. The resulting Mg₂SnO₄ was added by 1 ~5 wt. % LiF-Fe₂O₃-V₂O₅ (LFV, sintering additive with the weight ratio of LiF:Fe₂O₃:V₂O₅=4:1:2), then ball-milled for 4 h in ethanol medium. The granulated powders were pressed into pellets with a diameter of 18 mm and a thickness around 9 mm. The pellets were sintered at temperature ranging from 1000 °C to 1100 °C for 4 h in covered crucibles.

Bulk density of sintered samples were measured using the Archimedes method. The crystalline phases were identified by X-ray diffraction (XRD, EMPYREAN, PANalytical Co., the Netherlands) with Cu K α_1 radiation. The fracture morphology of the sintered samples was observed by the field emission scanning electron microscope (FE-SEM, SU-70, Hitachi Ltd., Japan). Microstructure and element distribution of samples were investigated by the transmission electron microscope (TEM, Tecnai G2 F20 S-TWIN, FEI, USA), and energy-dispersive X-ray spectroscopy (EDS),

^{*} Corresponding author. Tel.: +86 571 87951408; fax: +86 571 87953054. E-mail address: mse237@zju.edu.cn (Q. Zhang).

respectively. Microwave dielectric properties of dielectric constants ($\varepsilon_{\rm r}$), quality factors ($Q \times f$ values), and temperature coefficient of resonant frequency ($\tau_{\rm f}$) between 25 °C and 80 °C were measured in the TE₀₁₁ mode using Hakki–Coleman method with an Agilent HP-4294 A Network Analyzer. Ceramic sheet with Ag/Pd (with 20% Pd) was co-fired and analyzed to detect interactions between the low-fired samples and Ag/Pd electrodes.

3. Results and discussion

To reveal the effect of LFV additive on the sintering behavior of $\rm Mg_2SnO_4$ ceramics, a TEM equipped with an EDS system is employed to analyze $\rm Mg_2SnO_4$ sample sintered at 1050 °C with 4 wt.% LFV additive. It is observed that LFV melt and form an amorphous phase as shown in Fig. 1a (marked as region B). It indicates that LFV wet the grains of $\rm Mg_sSnO_4$ at sintering process, thereby promoting the densification of ceramic through a typical liquid-phase sintering mechanism [12]. It is worth noting that Fe ions is detected in both the grain (region A) and the intergranular glassy region (region B), while F and V ions are found only in the intergranular region (region B). Thus, $\rm Fe^{3+}$ ions were assumed to dissolved in the $\rm Mg_2SnO_4$ matrix, which was further proved by XRD analysis.

XRD patterns of pure Mg₂SnO₄ sintered at 1620 °C, Mg₂SnO₄ with xLFV (x=2 \sim 5 wt.%) ceramics sintered at 1050 °C, and Mg₂SnO₄ sintered at 1000 \sim 1100 °C are shown in Fig. 1c. Samples

over the whole composition range show a single spinel Mg₂SnO₄ phase (JCPDS card: 24-0732) with Fd3m space group. With the increasing of x, peak positions shift toward higher angles (Fig. 1d), indicating that the volume of unit cell decreases. Spinel Mg₂SnO₄ has the inversed configuration, with half the Mg²⁺ ions occupying the tetrahedral sites and the other half Mg²⁺ ions together with all of the Sn⁴⁺ ions occupying the octahedral sites [13]. On octahedral sites, the cation radius of Fe³⁺ with coordination number of 6 [R $(^{VI}Fe^{3+})=0.645 \text{ Å}]$ is smaller than that of Mg²⁺ $[R(^{VI}Mg^{2+})=$ 0.720 Å] and Sn^{4+} [R($^{\text{VI}}\text{Sn}^{4+}$)=0.690 Å]. On tetrahedral sites, the cation radius of Fe³⁺ with coordination number of 4 [R(^{IV}Fe³⁺)= 0.490 Å is also smaller than that of Mg²⁺ [R(^{IV}Mg²⁺)=0.570 Å] [14]. Therefore, the Fe³⁺ substitution might occur on either octahedral or tetrahedral sites. In both cases, such Fe3+ substitution would decrease the cell volume of Mg₂SnO₄. The previous study indicates that Fe³⁺ occupies both the octahedral and tetrahedral sites in the Mg₂TiO₄-MgFe₂O₄ spinel system [15]. Similarly, we could assume that heterovalent substitution of Mg^{2+} and Sn^{4+} takes place, and the solid solution of $Mg_{1-\lambda}$ $Fe_{\lambda}[Mg_{1-\delta+\lambda}Fe_{2\delta-\lambda}Sn_{1-\delta}]O_4$ is formed. As the sintering temperature increased, the solubility of Fe ion increased so that the peak positions further shift toward higher angles is as shown in Fig. 1d.

Fig. 2 demonstrates the SEM micrographs of 4 wt.% LFV-doped Mg₂SnO₄ ceramics sintered at different temperatures. At 1000°C, the fracture morphologies show a porous structure. As the sintering temperature increases, the structure becomes denser. Well-

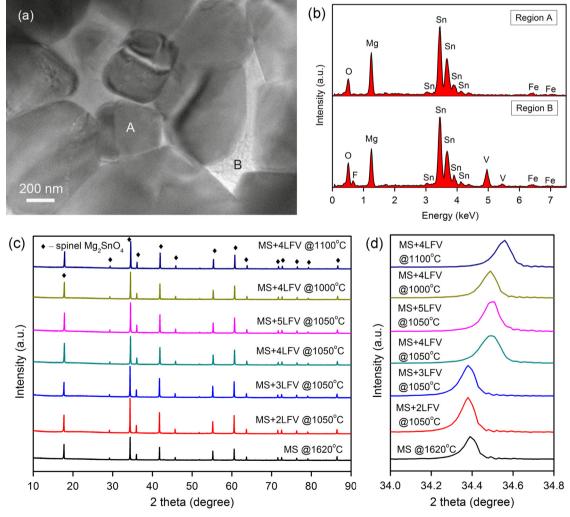


Fig. 1. (a) TEM image of Mg_2SnO_4 ceramic with 4 wt.% LFV additive sintered at 1050 °C, (b) EDS spectra of marked regions, (c) XRD patterns, and (d) (3 1 1) peaks of Mg_2SnO_4 ceramics with different LFV content sintered at different temperatures. MS+xLFV represents Mg_2SnO_4 ceramic with x wt.% LFV additive.

Download English Version:

https://daneshyari.com/en/article/1643546

Download Persian Version:

https://daneshyari.com/article/1643546

<u>Daneshyari.com</u>