ELSEVIER

Contents lists available at ScienceDirect

Materials Letters

journal homepage: www.elsevier.com/locate/matlet

Preparation, characterization and photoelectrochemical properties of hydrophilic Sn doped TiO₂ nanostructures

A. Santhosh Kumar ^a, K.K. Nagaraja ^a, N.M. Huang ^b, H.S. Nagaraja ^{a,*}

- ^a Materials Research Laboratory, Department of Physics, National Institute of Technology Karnataka, Surathkal 575025, India
- b Low Dimensional Materials Research Centre, Department of Physics, University of Malaya, Kuala Lumpur 50603, Malaysia

ARTICLE INFO

Article history: Received 5 January 2014 Accepted 24 February 2014 Available online 12 March 2014

Keywords: TiO₂ Sol-gel preparation Hydrophilic Photocurrent

ABSTRACT

Hydrophilic Sn doped TiO $_2$ nanostructured thin films have been fabricated using a sol–gel method, and followed by calcination at 450 °C. The samples are characterized by means of XRD, Raman, SEM and contact angle measurements. The XRD and Raman studies revealed that, the higher Sn doping content (3 at%) leads to the formation of mixed phases of TiO $_2$. SEM micrographs revealed that all samples are porous in nature. The contact angle of TiO $_2$ nanostructured films varied between 19° and 37° depending upon the Sn content. All the samples are photoelectrochemically active and 2% Sn doping significantly enhances the photoelectrochemical ability of TiO $_2$ film. The highest photocurrent density of 20 μ A cm $^{-2}$ is measured for 2 at% Sn doped TiO $_2$ in 0.2 M Na $_2$ SO $_4$ electrolyte, on light irradiation. Time dependent photoresponse tests have been carried out by measuring the photocurrent under chopped light irradiation.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Titanium dioxide (TiO₂) has been extensively investigated, due to its long-term stability against photo and chemical corrosion, favorable band edge positions, strong optical absorption, nontoxicity, and inexpensive cost [1,2]. However, TiO2 is a well-known n-type semiconductor with a large band gap (i.e. 3.2 eV for anatase structure and 3.0 eV for rutile structure), it absorbs in the ultraviolet (UV) regime of solar radiation (less than 5%) and thus significantly limits its widespread applications [1,3]. In order to address this fundamental issue, various strategies have been explored to improve the photoresponse of TiO₂ nanostructures, such as tuning its crystallite size and structure [3], doping with metal or nonmetal elements to induce red-shift of bandgap absorption [4,5], sensitizing with other narrow bandgap semiconductor materials like PbS [6], post-growth hydrogen annealing, and fabricating branched structures [7]. Doping with tin (Sn) is an attractive approach especially for TiO2, as the very similar ionic radii of Ti⁴⁺ (0.68°) and Sn⁴⁺ (0.69°) would allow easy substitution of Ti⁴⁺ by Sn⁴⁺ in the TiO₂ lattice [1,8]. Several reports are available on the preparation of Sn doped TiO2 nanostructured films and the effect of Sn doping on crystal structure, optical band gap and photocatalytic properties of TiO₂ [8-12]. However, the influence of Sn content on the photoelectrochemical properties of sol–gel derived TiO_2 nanostructures has been studied rarely. In this paper, we report a sol–gel approach for the growth of Sn containing TiO_2 nanostructured thin films and their enhanced photoelectrochemical properties.

2. Experimental section

All the chemicals are of analytical grade and used for the synthesis as such. In a typical synthesis, the gel was obtained by dissolving 1 wt% of polyvinyl alchoal (PVA) in 50 ml distilled water and stirred at 80 °C for 8 h. Titanium tetraisopropoxide (Aldrich) and citric acid (Merck) were added to the resulting PVA gel, while stirring at 80 °C in a molar ratio of 1:3. A clear homogeneous gel was obtained. Sn doping of TiO₂ is obtained by introducing 1, 2 and 3 at% tin tetrachloride pentahydrate [SnCl₄·5H₂O, Sigma Aldrich] into the above solution. The gel is ultrasonicated at 80 °C and aged for 24 h so that the PVA chains form complex with metal ions. To get the films, a pure and Sn doped TiO₂ polymer gel was spin coated twice onto cleaned glass and ITO substrates. An intermediate drying between coatings is done at 180 °C for 30 min. The prepared films are initially heat treated at 250 °C for 1 h, to promote pyrolysis of the polymer resin which results in an amorphous film, and later crystallized by annealing at 450 °C for 2 h. The prepared films are characterized and analyzed by different characterization techniques. The microstructural information is obtained by JEOL X-ray diffractometer (JDX-8030) studies using

^{*} Corresponding author. Mobile: +91 9480231041; fax: +91 824 2474033. E-mail address: hosakoppa@gmail.com (H.S. Nagaraja).

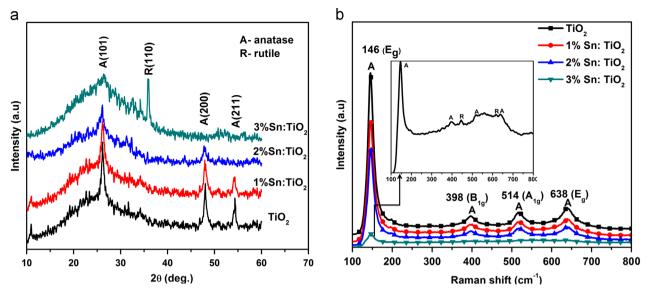


Fig. 1. XRD and Raman patterns of undoped and Sn doped ${\rm TiO_2}$ nanostructures.

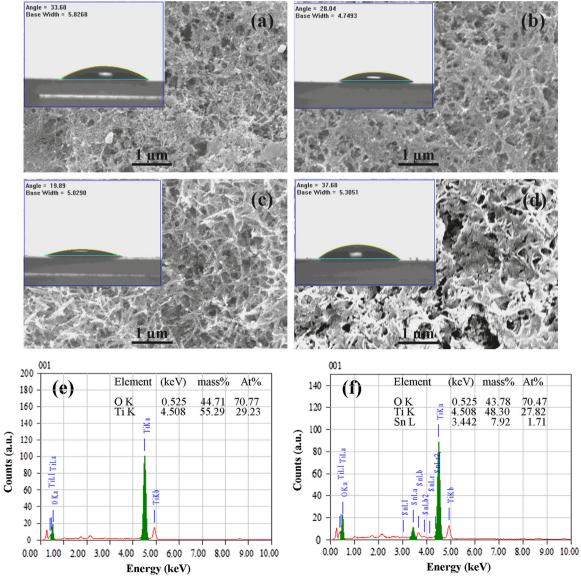


Fig. 2. SEM images of (a) TiO₂, (b) 1% Sn doped TiO₂, (c) 2% Sn doped TiO₂ (d) 3% Sn doped TiO₂ (the insets show images of droplets that formed on the surface of different samples during contact angle measurement), (e) EDX spectrum of TiO₂, and (f) EDX spectrum of 2% Sn doped TiO₂.

Download English Version:

https://daneshyari.com/en/article/1644319

Download Persian Version:

https://daneshyari.com/article/1644319

<u>Daneshyari.com</u>