ELSEVIER

#### Contents lists available at ScienceDirect

## Materials Letters

journal homepage: www.elsevier.com/locate/matlet



# Facile synthesis of $\beta$ -Bi<sub>2</sub>O<sub>3</sub>/Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub> nanocomposite with high visible-light photocatalytic activity



Guiyu Cai a, Lingling Xu a,\*, Bo Wei b, Jixin Che c, Hong Gao a, Wenjun Sun a

- <sup>a</sup> Key Laboratory of Photonic and Electric Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China
- <sup>b</sup> Department of Physics, Harbin Institute of Technology, Harbin 150080, PR China
- <sup>c</sup> The Aviation University of Air Force, Changchun 130022, PR China

#### ARTICLE INFO

Article history: Received 2 November 2013 Accepted 8 January 2014 Available online 17 January 2014

Keywords: Bi<sub>2</sub>O<sub>3</sub> Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub> Phase transformation Nanocomposites Photocatalysts

#### ABSTRACT

 $\beta$ -Bi<sub>2</sub>O<sub>3</sub>/Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub> composite nanosheets are synthesized via a rational heat-treatment of Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub> precursor. The precursor transforms to  $\beta$ -Bi<sub>2</sub>O<sub>3</sub>/Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub> composites and  $\alpha$ -Bi<sub>2</sub>O<sub>3</sub> phase under different calcination conditions. The photocatalytic activities are evaluated and compared through the photodegradation of methylene blue (MB) under visible-light irradiation.  $\beta$ -Bi<sub>2</sub>O<sub>3</sub>/Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub> composites exhibit much higher photodegradation activity than Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub> and  $\alpha$ -Bi<sub>2</sub>O<sub>3</sub> products. The significant enhancement is attributed to the formation of  $\beta$ -Bi<sub>2</sub>O<sub>3</sub>/Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub> heterojunctions, which is favorable for the low recombination rate of the electron–hole pairs.

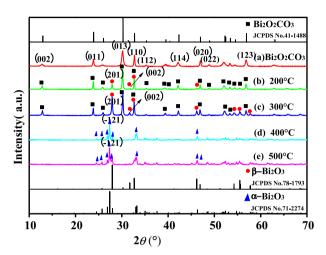
© 2014 Elsevier B.V. All rights reserved.

#### 1. Introduction

Semiconductor photocatalysis has been extensively studied to solve growing environment problems, like air purification and wastewater treatment [1–5]. Recently, bismuth-based compounds like Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub> and Bi<sub>2</sub>O<sub>3</sub> have received considerable attention as potential candidates of photocatalysts [6-12]. Aurivillius-type  $Bi_2O_2CO_3$ , with alternative  $(Bi_2O_2)^{2+}$  and  $CO_3^{2-}$  layers, has been studied as an efficient photocatalyst [6-9]. The application of Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub> in photocatalysis was first reported by Cheng et al. [6]. However, it is only active under ultraviolet light due to its wide band gap ( $\sim$ 3.5 eV). Therefore, it is very important and interesting to broaden the adsorption spectra to the visible light range. Combining Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub> with suitable semiconductors is an efficient way to enlarge light absorption. For example, Chen et al. synthesized Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub>/BiOI heterojunction, which presents effective photocatalytic activities on the photodegradation of organic dyes [7]. Using a cation exchange method, Wang et al. fabricated Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub>/Bi<sub>2</sub>S<sub>3</sub> hierarchical microspheres with enhanced visible light-driven photocatalytic activity [8]. In the composites, the heterojunction forms an inner electric field that can inhibit the combination of photoinduced electrons and vacancies.

Through the thermal decomposition of  $Bi_2O_2CO_3$  precursor,  $Bi_2O_3$  oxides ( $\alpha$ - or  $\beta$ -phases) can be obtained with excellent

photocatalytic activity and stability [9,10]. With a lower band gap energy and a special electronic structure,  $\beta\text{-Bi}_2\text{O}_3$  (2.47 eV) has been verified with higher photocatalytic activity than  $\alpha\text{-Bi}_2\text{O}_3$  (2.58 eV) [11,13]. Several reports on  $\beta\text{-Bi}_2\text{O}_3$  are documented [14,15]. In this study, instead of complete decomposition, we report the first synthesis of  $\beta\text{-Bi}_2\text{O}_3/\text{Bi}_2\text{O}_2\text{CO}_3$  nanosheet composites through a rational heat treatment of  $\text{Bi}_2\text{O}_2\text{CO}_3$  precursor. The composites presented much higher activity than pure  $\text{Bi}_2\text{O}_2\text{CO}_3$  and  $\alpha\text{-Bi}_2\text{O}_3$  phases under visible light irradiation, and possible enhancement mechanism was discussed.


#### 2. Materials and methods

 $Bi_2O_2CO_3$  powder was synthesized through a hydrothermal process. 4 mL HNO<sub>3</sub> (65%) was dissolved in 40 mL deionized water, and then 2.0 mmol of  $Bi(NO_3)_3 \cdot 5$  H<sub>2</sub>O was added to form a transparent solution. Subsequently, 4.0 mmol of ethylenediaminetetraacetic acid (EDTA) and 18.5 mL of NaOH (4 M) solution were added to the above solution with vigorous stirring for 2 h. Afterward, the suspension was transferred into a 40 mL Teflon-lined autoclave and hydrothermally treated at 160 °C for 12 h. After cooling naturally, the precipitate was filtered, washed with deionized water and dried at 60 °C for 12 h. Finally,  $Bi_2O_2CO_3$  precursor was calcined at 200–500 °C for 2 h in air to get different products.

The structure of the as-prepared powders was determined by X-ray diffraction (XRD, Rigaku-D/max 2600/PC) with Cu K $\alpha$  radiation. Thermogravimetric analysis/differential thermal analysis

<sup>\*</sup> Corresponding author. Tel.: +86 451 88060554. E-mail address: xulingling\_hit@163.com (L. Xu).

(TGA–DTA) of  $\rm Bi_2O_2CO_3$  precursor was performed on a TA SDT 2960 at a heating rate of 10 °C/min in air. The morphology was examined by a scanning electron microscope (SEM, Hitachi S-4800). UV–vis diffuse reflectance spectra (DRS) were measured by a Shimadzu UV–2550 spectrophotometer. X–ray photoelectron spectroscopy (XPS) test was carried out using a Thermofisher



**Fig. 1.** XRD patterns of as-prepared samples: (a)  $Bi_2O_2CO_3$ , (b)  $Bi_2O_2CO_3$  precursor after heat treatment at 200 °C, (c) 300 °C, (d) 400 °C and (e) 500 °C.

K-Alpha spectrometer with Al Kα excitation. Photocatalytic activity was evaluated by photodegradation of MB solution (100 mL,  $1.0\times 10^{-5}$  M). A 300 W Xe lamp with a cut off filter ( $\lambda \geq 420$  nm) was used for visible light irradiation. 0.02 g catalysts were dispersed in MB solution, and before irradiation, the suspension was stirred for 30 min in dark to reach the adsorption/desorption equilibrium. The concentration change was analyzed by a Perkin-Elmer Lambda-35 UV-vis spectrophotometer.

#### 3. Results and discussion

XRD patterns of Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub> samples before and after heattreatment are shown in Fig. 1. All diffraction peaks in Fig. 1 (a) can be perfectly indexed as the tetragonal phase Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub> (JCPDS 41-1488). The calculated lattice constants are a=b=3.865 Å and c=13.673 Å, which are in good agreement with the reported values [6]. For the 200 °C annealed sample (Fig. 1b), the peaks are similar to that of Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub> precursor. But some new peaks at 27.92°, 31.69°, 32.68°, and 46.18° can be observed, which can be ascribed to the formation of monocline β-Bi<sub>2</sub>O<sub>3</sub> (JCPDS 78-1793). As shown in TG-DTA curves in Fig. 2(a), about 6% mass loss was obtained up to 200 °C, because of the release of adsorbed H<sub>2</sub>O and partial decomposition of precursor. This partial transformation results in the co-existence of Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub> and β-Bi<sub>2</sub>O<sub>3</sub> phases. When annealing temperature was elevated to 300 °C (Fig. 1c), more intense peaks of β-Bi<sub>2</sub>O<sub>3</sub> appeared, suggesting a considerable

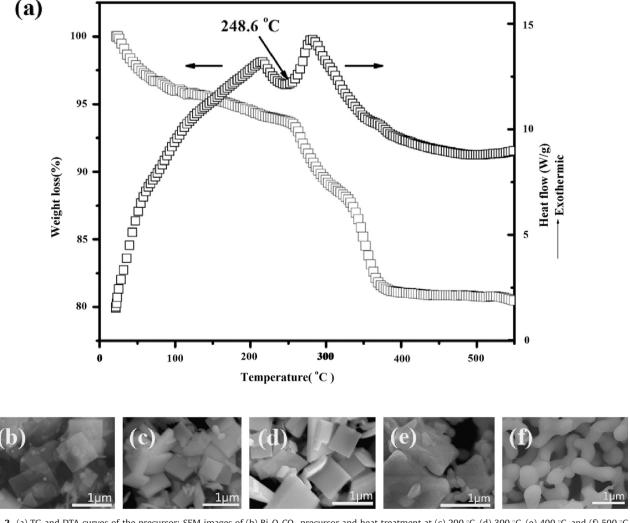



Fig. 2. (a) TG and DTA curves of the precursor; SEM images of (b) Bi<sub>2</sub>O<sub>2</sub>CO<sub>3</sub> precursor and heat treatment at (c) 200 °C, (d) 300 °C, (e) 400 °C, and (f) 500 °C.

### Download English Version:

# https://daneshyari.com/en/article/1644448

Download Persian Version:

 $\underline{https://daneshyari.com/article/1644448}$ 

Daneshyari.com