ELSEVIER

Contents lists available at ScienceDirect

Materials Letters

journal homepage: www.elsevier.com/locate/matlet

Tunable visible upconversion emission in Er³⁺/Yb³⁺-codoped KCaBO₃ phosphors by introducing Ho³⁺ ions

Subrata Das ^{a,*,1}, A. Amarnath Reddy ^{a,2}, S. Surendra Babu ^b, G. Vijaya Prakash ^a

- ^a Nanophotonics Laboratory, Department of Physics, Indian Institute of Technology Delhi, New Delhi 110016, India
- b Directorate of Laser Systems, Research Centre Imarat, Hyderabad 500069, India

ARTICLE INFO

Article history: Received 16 August 2013 Accepted 4 January 2014 Available online 10 January 2014

Keywords:
Optical materials and properties
Phosphors

ABSTRACT

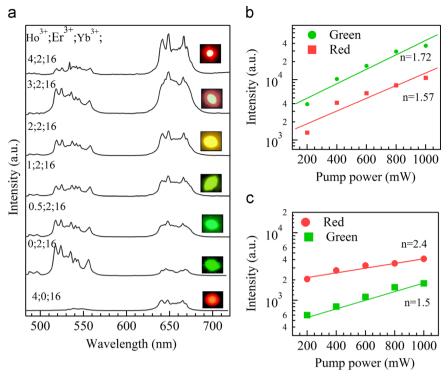
Herein, the tunable upconversion (UC) emission from KCaBO₃ phosphors, codoped with fixed Er^{3+} , Yb^{3+} and various Ho^{3+} -concentrations, has been demonstrated. Under 980 nm laser excitation, strong tunability from green to red color emission was successfully achieved via controlling the Ho^{3+} -codoping in KCaBO₃: Er^{3+} , Yb^{3+} , XHo^{3+} phosphor due to efficient two-photon excitations and inter-ion energy transfer (from Yb^{3+} to Er^{3+}/Ho^{3+}) mechanisms. Substantial decrease in the green-red intensity ratio from 3.94 to 0.21 and systematic enhancement in energy transfer efficiency (η), with the increment of Ho^{3+} -content, supported the above mechanisms.

© 2014 Elsevier B.V. All rights reserved.

1. Introductions

Recently, considerable efforts have been dedicated to the exploration of materials capable of emitting multicolor tunable luminescence under shorter wavelength excitation for their important applications in lighting, displays, bio-labels and other optoelectronic devices. However, multicolor upconversion (UC) emission can also be achieved from an optimized combination of multiple rare-earth (Re) ions, which can be efficiently excited with near infrared (NIR) light [1–5]. Codoping of Yb³⁺ sensitizer with Er³⁺ or Ho³⁺ activators remarkably enhances the UC efficiency due to the large absorption cross-section of Yb³⁺ in the NIR region and efficient energy-transfer (ET) to adjacent Re³⁺ activators. Essentially, due to similarity in the energy levels between Er³⁺ and Ho³⁺, the combined system containing Er³⁺, Ho³⁺, and Yb³⁺ ions could be ideal for precise selection of wide range of multicolor visible emission via controlled energy transfer mechanisms [1,6]. Indeed, the UC emission tunability is strongly dependent on hostactivator interactions, structure of host matrix, excited state absorption (ESA) and energy-transfer (ET) between the f-f transitions of sensitizer to the activator, solubility of dopants and fabrication methods [5–9]. In low-phonon energy hosts, such as fluorides, the color tunable UC properties are strongly enhanced

due to the relatively high multi-photon relaxation rates [2,6], despite major limitations, such as moisture sensitivity and chemical/mechanical instability [7,10–12]. Inorganic orthoborates can be a special choice for UC phosphor due to their wide range of transparency over a broad spectral range, designer-flexible lattice structure and durable for chemical/mechanical and high-laser usages. Alkali/alkaline-earth mixed borates have already demonstrated their importance as red/green down converted (DC) and UC phosphors for many optical applications [8,9,13]. Recently, we have reported the ability of Er³⁺/Yb³⁺-codoped KCaBO₃ as a potential UC green phosphor [8]. In another report, we have presented a new class of single-phased Dy³⁺/Eu³⁺-codoped KCaBO₃ phosphors, which showed excellent white-light emission upon UV-excitations [13]. According to structural geometry. KCaBO₃ material has strong capability to adopt high concentration of trivalent rare-earth ions [8,13]. In this work, green emitting KCaBO₃:Er³⁺,Yb³⁺ phosphor has been codoped with Ho³⁺ ions and the multicolor UC emissions have been achieved via the proper adjustment of Ho³⁺ ions in KCaBO₃:2 wt%Er³⁺,16 wt% Yb³⁺. The scope of the present work is to offer an influential and easily implemented method to achieve a multicolor emitting single system via upconversion.


2. Experimental details

Various Ho^{3+} ions (x=0–4 wt%) codoped KCaBO₃:2 wt%Er³⁺, 16 wt%Yb³⁺ phosphors were synthesized via a solid-state reaction method as described in our previous reports [8,13]. The upconverted (UC) and downconverted (DC) emission measurements were carried out using home built setups with respective laser

^{*} Corresponding author. Tel.: +91 11 2659 1326; fax: +91 11 2658 1114. E-mail addresses: phy_subrata@yahoo.co.in (S. Das), prakash@physics.iitd.ac.in (G. Vijaya Prakash).

¹ Current address: Department of Chemical Engineering, National Taiwan University, Taipei, Taiwan, R.O.C.

² Current address: Department of Materials and Ceramics Engineering, University of Aveiro, CICECO, 3810-193 Aveiro, Portugal.

Fig. 1. (a) Upconversion (UC) emission spectra of $x\%\text{Ho}^{3+}$ -codoped (x=0-4) KCaBO₃: Er^{3+} ,Yb³⁺ phosphors ($\lambda_{\text{exc}}=980$ nm). The images shown for each plot represent the true colors of phosphors, as seen visible to a naked eye. The log-log plot of UC emission intensity versus pumping power for green (524 nm) and red (660 nm) emissions of (b) KCaBO₃: Er^{3+} ,Yb³⁺ and (c) KCaBO₃: Er^{3+} ,Yb³⁺, 4%Ho³⁺ phosphors.

sources of 980 and 532 nm. The emitted light was dispersed into a monochromator (Acton-SP2300) coupled to a photo multiplier tube (PMT) through an appropriate lens system. For time resolved emission, mechanical chopper (12 Hz), lock-in amplifier, and digital storage oscilloscope were employed.

3. Results and discussion

The upconversion (UC) emission from KCaBO₃:Er³⁺,Yb³⁺ phosphors, codoped with $x\%\text{Ho}^{3+}$ ions, is depicted in Fig. 1(a). Strong emission bands centered at 524, 548 and 660 nm attribute to Er³⁺:²H_{11/2} \rightarrow ⁴I_{15/2}, Er³⁺:⁴S_{3/2} \rightarrow ⁴I_{15/2} +Ho³⁺:⁵S₂, ⁵F₄ \rightarrow ⁵I₈, and Er³⁺:⁴F_{9/2} \rightarrow ⁴I_{15/2} +Ho³⁺:⁵F₅ \rightarrow ⁵I₈ transitions, respectively. Weak blue emission (487 nm) has also been observed due to Er³⁺:⁴F_{7/2} \rightarrow ⁴I_{15/2} transitions. Importantly, Er³⁺:⁴S_{3/2} \rightarrow ⁴I_{15/2} and Er³⁺:⁴F_{9/2} \rightarrow ⁴I_{15/2} transitions (547 and 656 nm, respectively) are overlapped with that of Ho³⁺:⁵S₂,⁵F₄ \rightarrow ⁵I₈ and Ho³⁺:⁵F₅ \rightarrow ⁵I₈ transitions (547 and 660 nm, respectively) significantly. Due to such large overlap, enhancement in the respective emission with the Ho³⁺-concentration has been observed.

In order to understand ET and populating mechanisms, the UC emission intensity (I) has been plotted against infrared pump-power (P) according to equation $I \propto P^n$, where n represents the number of photons absorbed in the process. The linear fits of $\log(I)$ versus $\log(P)$ and the as estimated slope values for green and red bands of KCaBO₃:Er³⁺,Yb³⁺,x%Ho³⁺ (x=0,4) are represented in insets of Fig. 1(b) and (c), respectively. The estimated slopes are more than one, indicating a two-photon UC process [(Er³⁺: (4 I_{11/2} +photon \rightarrow 4 F_{7/2}), Ho³⁺:(5 I₆+photon \rightarrow 5 S₂, 5 F₄)] without any avalanche mechanism. However, considerable decrease in Green-to-Red integrated emission intensity ratio (GRR) with increasing Ho³⁺-content indicates the strong ET from Er³⁺ to Ho³⁺ ions and thus leads to the possibilities of the color tunability in the present phosphor materials. For comparison, the downconversion

emission for all samples has been recorded under 532 nm laser excitation and illustrated in Fig. 2(a). Unlike the UC, the DC spectra contain a broad green emission in the range 538-650 nm, corresponding to the transitions $\text{Er}^{3+}:{}^4S_{3/2} \to {}^4I_{15/2} + \text{Ho}^{3+}:{}^5S_2, {}^5F_4 \to {}^5I_8$. The intensity of this overlapping peak increased monotonically with the increase of Ho3+-content. Such an enhancement is expected due to increase of depopulation of Ho³⁺:⁵S₂,⁵F₄ states caused by direct radiation (see Supporting information). Fig. 2 (b) represents the schematic energy levels of the Er³⁺, Ho³⁺ and Yb³⁺ ions and sequential quadratic dependence of UC and the DC emission processes. As illustrated in the energy diagram, UC initiates through Yb³⁺-sensitizer excitation and ET to Er³⁺ and Ho³⁺ ions and consequently favors the simultaneous inter-ion ET between Er³⁺ and Ho³⁺ ions. Moreover, excited state absorption (ESA) and cross-relaxation (CR) processes in both Er³⁺ and Ho³⁺ ions significantly improve the UC efficiency. The excitation processes based on the long-lived 4I_{11/2} level of Er³⁺ ion and the 5I₆ level of Ho³⁺ ion are as follows:

Excited state absorption (ESA): Er^{3+} : (${}^4I_{11/2} + photon \rightarrow {}^4F_{7/2}$), Ho^{3+} : (${}^5I_6 + photon \rightarrow {}^5S_2, {}^5F_4$).

Cross-relaxation (CR): Er^{3+} : $[(^4I_{11/2} + ^4I_{11/2}) \rightarrow (^4F_{7/2} + ^4I_{15/2})]$ and Ho^{3+} : $[(^5S_2, ^5F_4 + ^5I_7) \rightarrow (^5F_5 + ^5I_6)]$.

Energy transfer (ET): Er^{3+} : ${}^{2}\text{H}_{11/2}$ + ${}^{4}\text{S}_{3/2} \rightarrow \text{Ho}^{3+}$: ${}^{5}\text{S}_{2}$ + ${}^{5}\text{F}_{5}$ levels and Er^{3+} : ${}^{4}\text{F}_{9/2} \rightarrow \text{Ho}^{3+}$: ${}^{5}\text{F}_{5}$.

As a consequence of ET from ${\rm Er}^{3+}$ to ${\rm Ho}^{3+}$ and cross relaxation in ${\rm Er}^{3+}$ and ${\rm Ho}^{3+}$ ions, the relative green intensity decreases and the red emission increases since the average distance between the dopant ions decrease. This is evident by the presence of a very strong red emission in $4\%{\rm Ho}^{3+}$ codoped sample with a relatively smaller GRR value (Table 1). It is interesting to note that the GRR values sharply decrease with respect to the increase of ${\rm Ho}^{3+}$ -concentration (Fig. 3(a)), which is a supportive evidence for efficient inter-ionic ET ${\rm Er}^{3+}$: ${}^2{\rm H}_{11/2}$ $+ {}^4{\rm S}_{3/2} \rightarrow {\rm Ho}^{3+}$: ${}^5{\rm S}_2$ $+ {}^5{\rm F}_5$.

The ET efficiency (η) between Er^{3+} : ${}^{2}H_{11/2}$ and Ho^{3+} : ${}^{5}S_{2}$ levels can be further estimated [3] from the experimental radiative

Download English Version:

https://daneshyari.com/en/article/1644511

Download Persian Version:

https://daneshyari.com/article/1644511

<u>Daneshyari.com</u>