ELSEVIER

Materials Letters

journal homepage: www.elsevier.com/locate/matlet

Photocatalytic behavior and photo-corrosion of visible-light-active silver carbonate/titanium dioxide

Yan Wang^{a,b,*}, Pinhong Ren^a, Caixia Feng^a, Xi Zheng^a, Zigui Wang^a, Deliang Li^a

^a Institute of Environmental and Analytical Sciences, College of Chemistry and Chemical Engineering, Henan University, Kaifeng 475004, PR China ^b Basic Experiments Teaching Center, Henan University, Kaifeng 475004, PR China

ARTICLE INFO

Article history: Received 29 August 2013 Accepted 2 October 2013 Available online 14 October 2013

Keywords: Semiconductors Nanocomposites Ag₂CO₃ Anatase Visible-light-active photocatalyst

ABSTRACT

Anatase TiO₂ containing a large amount of single-electron-trapped oxygen vacancy (denoted as TiO₂(V_o[•]); V_o[•] refers to single-electron-trapped oxygen vacancies which are abridged as SETOVs) was combined with Ag₂CO₃ to prepare Ag₂CO₃/TiO₂(V_o[•]) by the precipitation method. Ag Auger MNN spectra displayed that photo-corrosion of Ag₂CO₃ happened during photocatalytic process generating nascent metallic Ag. The photo-corrosion is originally not conducive to the photocatalysts. However, the nascent metallic Ag generated on the surface of TiO₂(V_o[•]) and SETOVs in TiO₂(V_o[•]) matrix jointly function to compensate for the gradually reduced visible light photocatalytic activity of Ag₂CO₃/TiO₂(V_o[•]) owing to photo-corrosion of Ag₂CO₃. It is just the synergistic effect between the oxygen vacancies and nascent metallic Ag that accounts for the high and stable photocatalytic activity of Ag₂CO₃/TiO₂(V_o[•]) towards the oxidation of propylene under visible light irradiation.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Silver carbonate (Ag₂CO₃) is unsuitable for photocatalyst, because it is liable to photo-corrosion that can seriously deactivate photocatalytic performance. Surprisingly, several recent publications state that Ag₂CO₃ possesses visible light photocatalytic behavior [1-3]. For example, Xu et al. reported in 2011 that Ag₂CO₃ prepared by a precipitation method displays a high activity towards degradation of phenol and methylene blue under visible light irradiation [1]. Since 1 year, Dai et al. prepared Ag₂CO₃ by a simple precipitation reaction between NaHCO₃ and AgNO₃, aiming to reveal the photo-corrosion mechanism of Agbased photocatalysts [2]. Based on the plane-wave-based density functional theory, Dong et al. theoretically calculated the band gap of Ag₂CO₃ photocatalyst and proposed that Ag₂CO₃ photocatalyst belongs to indirect band gap semiconductor [3]. Besides, other Ag-containing photocatalysts such as Ag@AgCl [4], Ag@AgBr [5], Ag₂SO₃ [6], Ag₃PO₄ [7,8], silver vanadates [9], and AgMO₂ (M=Al, Ga, and In) [10,11] might be promising highefficient photocatalysts. These Ag-based photocatalysts, however, usually experience photo-corrosion under visible light irradiation, which causes damage to their photocatalytic activity [1,2]. Thus, it is imperative to develop novel visible-light-active

 \ast Corresponding author at: Henan University, Basic Experiments Teaching Center, Kaifeng 475004, PR China. Tel./fax: +86 378 3881960.

E-mail address: wangyan8079@henu.edu.cn (Y. Wang).

 Ag_2CO_3 -based photocatalysts with excellent stability and high visible light photocatalytic activity.

Nanotubular titanic acid (denoted as NTA) can be well adopted as the precursor to fabricate highly visible-light-active photocatalysts [12–18]. It was proposed that the generation of SETOVs accounts for the apparent visible light absorption rather than visible light photocatalytic activity of as-obtained anatase $TiO_2(V_o^{-})$ matrix [12,13]. However, anatase $TiO_2(V_o^{-})$ doped with N shows visible light photocatalytic activity towards air pollutant, which is ascribed to the synergistic effect between SETOVs and doped-N [15].

Bearing those perspectives in mind and viewing the important role of SETOVs in inducing visible light photocatalytic activity, in this paper $Ag_2CO_3/TiO_2(V_o^{*})$ was prepared using NTA as medium *via* a facile precipitation method. We aim in this paper to increase the stability of Ag_2CO_3 as a photocatalyst and improve the visible light photocatalytic activity of $TiO_2(V_o^{*})$ by making use of possible synergistic effect between Ag_2CO_3 and anatase $TiO_2(V_o^{*})$ matrix.

2. Experimental section

 Ag_2CO_3 was synthesized at room temperature with the aqueous solutions of $AgNO_3$ and Na_2CO_3 as the starting materials. 15 mL of $AgNO_3$ (0.1 M) was added into 5 mL of Na_2CO_3 (0.1 M) under 20 min of magnetic stirring giving yellow precipitate filtered, washed with distilled water and dried at 60 °C in an oven.

NTA was prepared according to the method reported elsewhere [12]. 1 g of as-prepared NTA was heated at 600 °C in a tubular furnace for 2 h to yield anatase TiO_2 (V_o[•]). Then 0.5 g of resultant

 $TiO_2(V_o`)$ was dispersed in 10 mL of distilled water and mixed with 5 mL of Na_2CO_3 solution to afford a mixed suspension. Subsequently, 15 mL of AgNO₃ (0.1 M) solution was dripped into the mixed suspension under magnetic stirring to yield precipitate. As-obtained precipitate was filtered, washed with distilled water, and dried at 60 °C in an oven to provide desired Ag₂CO₃/TiO₂(V_o`). Commercial P25–TiO₂ was used for a comparative study.

TEM (JEM-2010) was performed to analyze the microstructures of catalysts. XRD patterns were measured with a DX-2500 diffractometer. UV-vis DRS was recorded with a Shimadzu U-4100 spectrometer. ESR spectra were obtained with a Brüker ESP 300E apparatus at a field modulation of 100 kHz, an amplitude modulation of 0.2 mT and a microwave power of 10 mW (the measurement was conducted at room temperature in ambient air, without vacuum-pumping). The *g*-tensors of the ESR signals were obtained by setting *g* of diphenyl picryl hydrazyl (DPPH; 2.0036) as the reference. XPS was performed with a Kratos Amicus apparatus (excitation source: monochromatized Mg $K\alpha$ ($h\nu$ =1253.6 eV) radiation). The binding energies were calibrated with reference to the adventitious C 1s line at 284.8 eV.

The photocatalytic activity of Ag_2CO_3 and $Ag_2CO_3/TiO_2(V_o^{\cdot})$ samples were evaluated by monitoring the oxidation of propylene under visible light irradiation. Briefly, 25 mg aliquot of each sample was spread on one side of a roughened glass plate (ca. 8 cm²) located in a home-made glass tube reactor equipped with a 500 W xenon lamp as the visible light source. Between the

xenon lamp and reactor was inserted an ultraviolet (UV) cut 420 filter to eliminate UV light. The reactor was surrounded by a water channel so as to eliminate infrared light and keep a constant reaction temperature at room temperature. The intensity of the light with \geq 420 nm irradiated on to-be-tested samples is ca. 9 mW/cm²; and the flow rate of the feed gas (pure C_3H_6 and dry air stored in a high-pressure cylinder; C₃H₆ concentration: about 500 ppmV) is 200 mL/h. Prior to irradiation, the feed gas was allowed to flow through the reactor continuously until the adsorption/desorption equilibrium was established. The on-line concentration of $C_{3}H_{6}$, C, was determined by a chromatograph (GC7900) equipped with a flame ionization detector (FID), a GDX-502 column, and a reactor loaded with Ni catalyst for the methanization of CO₂. The removal rate of C₃H₆ is calculated as $(C_0 - C)/C_0 \times 100\%$, where C_0 refers to the initial C_3H_6 concentration (500 ppmV).

3. Results and discussion

Fig. 1(a–c) shows the TEM morphologies of NTA, $TiO_2(V_o^{-})$, and $Ag_2CO_3/TiO_2(V_o^{-})$ samples, respectively. NTA have openended nanotubular morphology with a length of several tens of nanometers. After NTA were thermally treated at 600 °C for 2 h, the resultant samples $TiO_2(V_o^{-})$ do not remain the nanotubular morphology but were destroyed into nanorods with a diameter of

Fig. 1. TEM morphology of (a) NTA, (b) TiO₂(V_o⁺), and (c) Ag₂CO₃/TiO₂(V_o⁺).

Download English Version:

https://daneshyari.com/en/article/1644765

Download Persian Version:

https://daneshyari.com/article/1644765

Daneshyari.com