Contents lists available at [ScienceDirect](www.sciencedirect.com/science/journal/0167577X)

Materials Letters

journal homepage: <www.elsevier.com/locate/matlet>t/ \mathbf{w}

Fundamental mechanism of tetragonal transitions in titanium hydride

C.P. Liang, H.R. Gong*

State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, China

article info

Article history: Received 3 August 2013 Accepted 20 October 2013 Available online 26 October 2013

Keywords: Metals and alloys First principles calculation Phase transformation Electronic structure

ABSTRACT

First principles calculation reveals that the tetragonal transitions of TiH_x ($1 \le x \le 2$) could be divided into two types in terms of energy pathway, and that the intrinsic composition range of the $\delta \rightarrow \epsilon$ transition is 1.5 ≤ x ≤ 2. Calculation also indicates that the fundamental reasons for the $\delta \rightarrow \epsilon$ and $\delta \rightarrow \gamma$ transitions are quite different from each other, i.e., mechanical instability causes the $\delta \rightarrow \varepsilon$ transition and internal symmetry breaking of cubic structures induces the $\delta \rightarrow \gamma$ transition. In addition, the Poisson ratio of δ phases between the x and z axes is proposed to provide a deeper understanding of intrinsic natures of tetragonal transitions.

 \odot 2013 Elsevier B.V. All rights reserved.

1. Introduction

Titanium hydrides are regarded as important phases in Ti alloys designed for hydrogen storage and various structural applications [\[1\].](#page--1-0) It is well known that TiH_x ($1 \le x \le 2$) has tetragonal transitions from the FCC structure (δ phase) to two face-centered-tetragonal (FCT) structures (c/a < 1, ε phase; c/a > 1, γ phase) [\[2\]](#page--1-0). The starting compositions of the $\delta \rightarrow \varepsilon$ transition, however, are quite different from experiments in the literature, i.e., $x=1.70$ [\[3\]](#page--1-0), $x=1.73$ [\[4\]](#page--1-0), $x=1.77$ [\[5\],](#page--1-0) $x=1.85$ [\[6\]](#page--1-0), $x=1.90$ [\[7\],](#page--1-0) and $x=1.924$ [\[8\]](#page--1-0). Fundamentally, an intrinsic composition range for the $\delta \rightarrow \varepsilon$ transition should exist and have nothing to do with experimental techniques. Another controversy about tetragonal transitions is that for TiH_{1.75} and TiH₂, both $\delta \rightarrow \varepsilon$ and δ \rightarrow γ transitions were observed from theoretical calculations, while only the $\delta \rightarrow \varepsilon$ transition was confirmed experimentally [\[9](#page--1-0)–[11\]](#page--1-0). In addition, the underlying reason for the $\delta \rightarrow \varepsilon$ transition has been investigated extensively [\[9](#page--1-0)–[13\]](#page--1-0), whereas the mechanism of the $\delta \rightarrow \gamma$ transition is still unrevealed, as more attention was paid to the stability of γ phase as well as $\alpha \rightarrow \gamma$ transition [\[14](#page--1-0)–[17\].](#page--1-0) In this study, first principles calculations are conducted to clarify the above controversies in the literature, and to reveal the fundamental mechanism of tetragonal transitions in TiHx.

2. Calculation methods

The calculation is based on the well-established Vienna ab initio simulation package with the projector-augmented wave method and generalized gradient approximation [\[18,19\]](#page--1-0). Accordingly, five compositions of TiH_x are selected for the δ structure, i.e., an FCC unit of 4 Ti atoms with the additions of 4, 5, 6, 7, and 8H atoms stand for TiH, TiH_{1.25}, TiH_{1.5}, TiH_{1.75}, and TiH₂ phases, respectively. To derive the FCT structures, the original c/a ratio of 1 for each FCC TiH_x is changed from 0.80 to 1.20 with an interval of 0.01, in order to identify the two local minima of total energy corresponding to the γ $(c/a>1)$ and ε (c/a < 1) phases. At each c/a ratio, the volume and atomic positions are fully relaxed, while the crystal shape is kept constant. The cutoff energies are 450 eV for plane-wave basis, and the k-meshes of $15 \times 15 \times 15$ and $21 \times 21 \times 21$ in corresponding reciprocal lattice $(2\pi/a, 2\pi/a, 2\pi/c)$ of each structure are selected for relaxation and static calculations, respectively. It should be pointed out that the H atoms are located at the tetrahedral interstitial sites of the lattice, and the combination of letters $(a-h)$ is used to express the atomic configuration of H, i.e., the energetically preferable configurations of (abgh) and (abceg) for TiH and TiH $_{1.25}$, respectively; three configurations of $(C_1:abcgh)$, $(C_2:abcdeg)$, and $(C_3:abcdef)$ for TiH_{1.5}; and only one H configuration for TiH_{1.75} and Ti H_2 [\[20\].](#page--1-0)

3. Results and discussion

After the calculation, it could be seen that the derived properties of various TiH_{x} phases are in good agreement with available experimental results in the literature [\[3,5,21](#page--1-0)–[23\]](#page--1-0). For instance, the present lattice constants of ε TiH_{1.75} are a = 4.467 Å and c = 4.244 Å, which are consistent with corresponding experimental values of $a=4.475$ Å and $c=4.372$ Å [\[5\].](#page--1-0) The heat of formation (-160.15 kJ/ mol \cdot Ti) of δ TiH₂ also matches well with the standard δ H_f at 0 K $(-165 \text{ kJ/mol} \cdot \text{Ti})$ [\[23\].](#page--1-0)

To locate the FCT structures, the total energies as a function of c/a ratio are calculated and derived for each TiH_x phase. As a

CrossMark

materials letters

 $$Corresponding author. Tel.: +86 731 88877387; fax: +86 731 88710855.$ E-mail address: [gonghr@csu.edu.cn \(H.R. Gong\).](mailto:gonghr@csu.edu.cn)

⁰¹⁶⁷⁻⁵⁷⁷X/\$ - see front matter \circ 2013 Elsevier B.V. All rights reserved. <http://dx.doi.org/10.1016/j.matlet.2013.10.091>

typical example, Fig. 1 shows the energy curves of $TiH_{1.5}$ with H configurations of C_1 , C_2 , and C_3 . It could be seen clearly that the tetragonal transitions of TiH $_{1.5}$ would be divided into two types in terms of energy pathway, i.e., type I for both C_2 and C_3 with only one energy minimum corresponding to the $\delta \rightarrow \gamma$ transition, and type II for C₁ with two minima corresponding to the $\delta \rightarrow \epsilon$ and $\delta \rightarrow \gamma$ transitions. Furthermore, the present results also indicate that the tetragonal transitions of TiH and TiH $_{1.25}$ belong to type I, while the energy curves of TiH_{1.75} and TiH₂ are regarded as type II (figures not shown). It should be pointed out that such a classification of tetragonal transitions is proposed for the first time in the present study, and that the two energy minima of type II for TiH_{1.5}, TiH_{1.75}, and TiH₂ agree well with other theoretical prediction in the literature [\[9](#page--1-0)-[11\]](#page--1-0).

We now investigate the characteristics of the tetragonal transition of type II for TiH_{1.5} (C₁), TiH_{1.75}, and TiH₂ phases. Accordingly, the atomic volume of TiH₂ as a function of c/a ratio is displayed in Fig. 2 as a typical example. It could be seen that the atomic volume reaches the highest point when c/a equals 1.0 (δ structure), and that there is an almost linear decrease of atomic volume with the decrease or increase of c/a from 1.0 (ε or γ structures). Moreover, the absolute values of the slopes of volume curve as a function of c/a are calculated to be 8.68, 7.55, and 7.68 $\AA^3/(c/a)$ for the $\delta \rightarrow \epsilon$ transitions of TiH_{1.5} (C₁), TiH_{1.75}, and TiH₂, respectively, which are much bigger than the corresponding values of 4.19, 3.69, and 4.09 Å³/(*c*/*a*) for the $\delta \rightarrow \gamma$ transitions. Considering that the coefficients of linear thermal expansion of TiH_x are very big values of about 2.0×10^{-5} /K [\[24\]](#page--1-0) and the tetragonal transition is the

Fig. 1. Total energies of TiH_{1.5} with H configurations of C_1 , C_2 , and C_3 .

Fig. 2. Atomic volume of TiH₂ as a function of c/a ratio.

second-order phase transition, such a huge difference of volume contraction between $\delta \rightarrow \varepsilon$ and $\delta \rightarrow \gamma$ with the decrease of the temperature implies that the $\delta \rightarrow \varepsilon$ transition would be far more likely to happen preferentially, and the $\delta \rightarrow \gamma$ transition would be thus impeded by $\delta \rightarrow \varepsilon$, although the energy difference between ε and γ is very small [\[9](#page--1-0)–[11\].](#page--1-0) This would therefore give a reasonable explanation to the above-mentioned controversy that both $\delta \rightarrow \varepsilon$ and $\delta \rightarrow \gamma$ transitions of TiH_{1.75}, and TiH₂ were observed from theoretical calculations, while only the $\delta \rightarrow \varepsilon$ transition was confirmed experimentally [\[9](#page--1-0)–[11\].](#page--1-0)

It is of interest to reveal the composition range for the $\delta \rightarrow \varepsilon$ transition at the ground state of 0 K. The above calculated results signify that the $\delta \rightarrow \gamma$ transition (type I) is found in TiH. TiH_{1.25}, and TiH_{1.5} (C₂ and C₃) phases, while the $\delta \rightarrow \varepsilon$ transition (type II) is discovered in TiH_{1.75}, TiH₂, and TiH_{1.5} (C₁). That is to say, both $\delta \rightarrow \gamma$ and $\delta \rightarrow \varepsilon$ transitions could happen only in the TiH_{1.5} phase, and a transfer of tetragonal transition from $\delta \rightarrow \gamma$ to $\delta \rightarrow \varepsilon$ takes place just at TiH_{1.5}, suggesting that the present composition range of the $\delta \rightarrow \varepsilon$ transition in TiH_x would be 1.5 $\leq x \leq 2$. It should be noted that the experimentally obtained starting compositions $(x=1.70$ [\[3\],](#page--1-0) $x=1.73$ [\[4\],](#page--1-0) $x=1.77$ [\[5\],](#page--1-0) $x=1.85$ [\[6\]](#page--1-0), $x=1.90$ [\[7\]](#page--1-0), and $x=1.924$ [\[8\]\)](#page--1-0) are all within the present composition range. Such a nice agreement could not only bring about reasonable clarification to the above-related experimental controversy, but also imply that the present derived composition should be an intrinsic range independent of experimental techniques.

Regarding the underlying mechanism of the $\delta \rightarrow \varepsilon$ transition in Ti H_x , there are already several different interpretations in the literature, i.e., splitting of the degenerate bands at E_f along $F-L$ direction by means of the Jahn–Teller effect [\[9,10,12\]](#page--1-0), the reduction of the density of states at E_f in the $F-K$ direction [\[12\],](#page--1-0) and the Van Hove singularity [\[10\].](#page--1-0) In the present study, the shear moduli of the {110} planes at 0 K, i.e., $(C_{11}-C_{12})/2$, are calculated to be -29 , -16 , and -62 GPa for δ TiH_{1.5}(C₁), TiH_{1.75}, and TiH₂ phases, respectively. Such negative values of $(C_{11}-C_{12})/2$ suggest that the δ structures of TiH_{1.5} (C₁), TiH_{1.75}, and TiH₂ should be mechanically unstable at 0 K according to the strain energy theory, and that the ${110}$ < 110 > shear would happen spontaneously to induce the $\delta \rightarrow \varepsilon$ transition. It should be noted that after the tetragonal transition, the ε structures (FCT) of TiH_{1.5} (C₁), TiH_{1.75}, and TiH₂ are all mechanically stable. In other words, it is mechanical instability which fundamentally leads to the $\delta \rightarrow \varepsilon$ transition of TiH_x phases.

It is of importance to further find out the fundamental mechanism of the $\delta \rightarrow \gamma$ transition in TiH_x. First of all, the present calculation shows that the δ TiH, TiH_{1.25}, and TiH_{1.5} (C₂ and C₃) phases are all mechanically stable with positive values of $(C_{11}-C_{12})/2$, which seem rather dissimilar from the δ TiH_{1.5} (C₁), TiH_{1.75}, and TiH₂ phases with mechanical instability related before. Such a feature of δ structure implies that the $\delta \rightarrow \gamma$ transition in TiH_x phases should not be triggered by mechanical instability. Second, the electronic structures of the δ TiH, TiH_{1.25}, and TiH_{1.5} (C₂ and C₃) phases are also quite different from those of δ TiH_{1.5} (C₁), TiH_{1.75}, and TiH₂. As shown in [Fig. 3,](#page--1-0) the degenerate bands of δ TiH_{1.75} and TiH₂ around Fermi level (E_f) bring about the high density of states (DOSs) at E_f and Jahn–Teller instability [\[9,10](#page--1-0),[12\]](#page--1-0), which consequently induce the $\delta \rightarrow \varepsilon$ transition with degenerate bands split and lower DOSs at E_f On the contrary, it could be seen clearly from [Fig. 3](#page--1-0) that the split of degenerate bands has already happened in the δ structures of TiH(abgh), TiH_{1.25}(abceg), and TiH_{1.5} (C₃), and that the $\delta \rightarrow \gamma$ transition has much less effect on electronic structure than the $\delta \rightarrow \varepsilon$ transition. That is the fundamental reason why the δ TiH, TiH_{1.25}, and TiH_{1.5} (C₂ and C₃) phases are mechanically stable as shown before. Therefore, it can be deduced that both mechanical instability and Jahn–Teller effect in the $\delta \rightarrow \varepsilon$ transition [\[9,10](#page--1-0),[12\]](#page--1-0) are not suitable mechanisms for the $\delta \rightarrow \gamma$ transition.

Third, one can observe from [Fig. 3](#page--1-0) that for each one of TiH (abgh), TiH_{1.25}(abceg), and TiH_{1.5} (C₃), the electronic band structure Download English Version:

<https://daneshyari.com/en/article/1644811>

Download Persian Version:

<https://daneshyari.com/article/1644811>

[Daneshyari.com](https://daneshyari.com)