Contents lists available at ScienceDirect

Materials Letters

journal homepage: www.elsevier.com/locate/matlet

Fundamental mechanism of tetragonal transitions in titanium hydride

C.P. Liang, H.R. Gong*

State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, China

ARTICLE INFO

Article history: Received 3 August 2013 Accepted 20 October 2013 Available online 26 October 2013

Keywords: Metals and alloys First principles calculation Phase transformation Electronic structure

ABSTRACT

First principles calculation reveals that the tetragonal transitions of $\text{TiH}_x (1 \le x \le 2)$ could be divided into two types in terms of energy pathway, and that the intrinsic composition range of the $\delta \rightarrow \varepsilon$ transition is $1.5 \le x \le 2$. Calculation also indicates that the fundamental reasons for the $\delta \rightarrow \varepsilon$ and $\delta \rightarrow \gamma$ transitions are quite different from each other, i.e., mechanical instability causes the $\delta \rightarrow \varepsilon$ transition and internal symmetry breaking of cubic structures induces the $\delta \rightarrow \gamma$ transition. In addition, the Poisson ratio of δ phases between the *x* and *z* axes is proposed to provide a deeper understanding of intrinsic natures of tetragonal transitions.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Titanium hydrides are regarded as important phases in Ti alloys designed for hydrogen storage and various structural applications [1]. It is well known that TiH_x ($1 \le x \le 2$) has tetragonal transitions from the FCC structure (δ phase) to two face-centered-tetragonal (FCT) structures (c/a < 1, ε phase; c/a > 1, γ phase) [2]. The starting compositions of the $\delta \rightarrow \varepsilon$ transition, however, are quite different from experiments in the literature, i.e., *x*=1.70 [3], *x*=1.73 [4], *x*=1.77 [5], *x*=1.85 [6], *x*=1.90 [7], and *x*=1.924 [8]. Fundamentally, an intrinsic composition range for the $\delta \rightarrow \epsilon$ transition should exist and have nothing to do with experimental techniques. Another controversy about tetragonal transitions is that for $\text{TiH}_{1.75}$ and TiH_2 , both $\delta\!\rightarrow\!\epsilon$ and $\delta \rightarrow \gamma$ transitions were observed from theoretical calculations, while only the $\delta \rightarrow \varepsilon$ transition was confirmed experimentally [9–11]. In addition, the underlying reason for the $\delta \rightarrow \epsilon$ transition has been investigated extensively [9–13], whereas the mechanism of the $\delta \rightarrow \gamma$ transition is still unrevealed, as more attention was paid to the stability of γ phase as well as $\alpha \rightarrow \gamma$ transition [14–17]. In this study, first principles calculations are conducted to clarify the above controversies in the literature, and to reveal the fundamental mechanism of tetragonal transitions in TiH_x.

2. Calculation methods

The calculation is based on the well-established Vienna ab initio simulation package with the projector-augmented wave method and generalized gradient approximation [18,19]. Accordingly, five

compositions of TiH_x are selected for the δ structure, i.e., an FCC unit of 4 Ti atoms with the additions of 4, 5, 6, 7, and 8H atoms stand for TiH, TiH_{1,25}, TiH_{1,5}, TiH_{1,75}, and TiH₂ phases, respectively. To derive the FCT structures, the original c/a ratio of 1 for each FCC TiH_x is changed from 0.80 to 1.20 with an interval of 0.01, in order to identify the two local minima of total energy corresponding to the γ (c|a > 1) and ε (c|a < 1) phases. At each c|a ratio, the volume and atomic positions are fully relaxed, while the crystal shape is kept constant. The cutoff energies are 450 eV for plane-wave basis, and the k-meshes of $15 \times 15 \times 15$ and $21 \times 21 \times 21$ in corresponding reciprocal lattice $(2\pi/a, 2\pi/a, 2\pi/c)$ of each structure are selected for relaxation and static calculations, respectively. It should be pointed out that the H atoms are located at the tetrahedral interstitial sites of the lattice, and the combination of letters (a-h) is used to express the atomic configuration of H, i.e., the energetically preferable configurations of (abgh) and (abceg) for TiH and TiH₁₂₅, respectively; three configurations of $(C_1:abcfgh)$, $(C_2:abcdeg)$, and (C₃:*abcdef*) for TiH_{1.5}; and only one H configuration for TiH_{1.75} and TiH₂ [20].

3. Results and discussion

After the calculation, it could be seen that the derived properties of various TiH_x phases are in good agreement with available experimental results in the literature [3,5,21–23]. For instance, the present lattice constants of ε TiH_{1.75} are a=4.467 Å and c=4.244 Å, which are consistent with corresponding experimental values of a=4.475 Å and c=4.372 Å [5]. The heat of formation (-160.15 kJ/ mol · Ti) of δ TiH₂ also matches well with the standard δ H_f at 0 K (-165 kJ/mol · Ti) [23].

To locate the FCT structures, the total energies as a function of c/a ratio are calculated and derived for each TiH_x phase. As a

CrossMark

^{*} Corresponding author. Tel.: +86 731 88877387; fax: +86 731 88710855. *E-mail address*: gonghr@csu.edu.cn (H.R. Gong).

typical example, Fig. 1 shows the energy curves of TiH_{1.5} with H configurations of C₁, C₂, and C₃. It could be seen clearly that the tetragonal transitions of TiH_{1.5} would be divided into two types in terms of energy pathway, i.e., type I for both C₂ and C₃ with only one energy minimum corresponding to the $\delta \rightarrow \gamma$ transition, and type II for C₁ with two minima corresponding to the $\delta \rightarrow \varepsilon$ and $\delta \rightarrow \gamma$ transitions. Furthermore, the present results also indicate that the tetragonal transitions of TiH and TiH_{1.25} belong to type I, while the energy curves of TiH_{1.75} and TiH₂ are regarded as type II (figures not shown). It should be pointed out that such a classification of tetragonal transitions is proposed for the first time in the present study, and that the two energy minima of type II for TiH_{1.5}, TiH_{1.75}, and TiH₂ agree well with other theoretical prediction in the literature [9–11].

We now investigate the characteristics of the tetragonal transition of type II for TiH_{1.5} (C₁), TiH_{1.75}, and TiH₂ phases. Accordingly, the atomic volume of TiH₂ as a function of *c/a* ratio is displayed in Fig. 2 as a typical example. It could be seen that the atomic volume reaches the highest point when *c/a* equals 1.0 (δ structure), and that there is an almost linear decrease of atomic volume with the decrease or increase of *c/a* from 1.0 (ε or γ structures). Moreover, the absolute values of the slopes of volume curve as a function of *c/a* are calculated to be 8.68, 7.55, and 7.68 Å³/(*c/a*) for the $\delta \rightarrow \varepsilon$ transitions of TiH_{1.5} (C₁), TiH_{1.75}, and TiH₂, respectively, which are much bigger than the corresponding values of 4.19, 3.69, and 4.09 Å³/(*c/a*) for the $\delta \rightarrow \gamma$ transitions. Considering that the coefficients of linear thermal expansion of TiH_x are very big values of about 2.0 × 10⁻⁵ /K [24] and the tetragonal transition is the

Fig. 1. Total energies of TiH_{1.5} with H configurations of C₁, C₂, and C₃.

Fig. 2. Atomic volume of TiH_2 as a function of c/a ratio.

second-order phase transition, such a huge difference of volume contraction between $\delta \rightarrow \varepsilon$ and $\delta \rightarrow \gamma$ with the decrease of the temperature implies that the $\delta \rightarrow \varepsilon$ transition would be far more likely to happen preferentially, and the $\delta \rightarrow \gamma$ transition would be thus impeded by $\delta \rightarrow \varepsilon$, although the energy difference between ε and γ is very small [9–11]. This would therefore give a reasonable explanation to the above-mentioned controversy that both $\delta \rightarrow \varepsilon$ and $\delta \rightarrow \gamma$ transitions of TiH_{1.75}, and TiH₂ were observed from theoretical calculations, while only the $\delta \rightarrow \varepsilon$ transition was confirmed experimentally [9–11].

It is of interest to reveal the composition range for the $\delta \rightarrow \epsilon$ transition at the ground state of 0 K. The above calculated results signify that the $\delta \rightarrow \gamma$ transition (type I) is found in TiH. TiH_{1.25}, and TiH_{1.5} (C₂ and C₃) phases, while the $\delta \rightarrow \epsilon$ transition (type II) is discovered in TiH_{1.75}, TiH₂, and TiH_{1.5} (C₁). That is to say, both $\delta \rightarrow \gamma$ and $\delta \rightarrow \varepsilon$ transitions could happen only in the TiH_{1.5} phase, and a transfer of tetragonal transition from $\delta \rightarrow \gamma$ to $\delta \rightarrow \varepsilon$ takes place just at TiH_{1.5}, suggesting that the present composition range of the $\delta \rightarrow \varepsilon$ transition in TiH_x would be $1.5 \le x \le 2$. It should be noted that the experimentally obtained starting compositions (x=1.70 [3], x=1.73 [4], x=1.77 [5], x=1.85 [6], x=1.90 [7], and x=1.924 [8]) are all within the present composition range. Such a nice agreement could not only bring about reasonable clarification to the above-related experimental controversy, but also imply that the present derived composition should be an intrinsic range independent of experimental techniques.

Regarding the underlying mechanism of the $\delta \rightarrow \epsilon$ transition in TiH_x, there are already several different interpretations in the literature, i.e., splitting of the degenerate bands at $E_{\rm f}$ along $\Gamma - L$ direction by means of the Jahn-Teller effect [9,10,12], the reduction of the density of states at E_f in the $\Gamma - K$ direction [12], and the Van Hove singularity [10]. In the present study, the shear moduli of the {110} planes at 0 K, i.e., $(C_{11}-C_{12})/2$, are calculated to be -29, -16, and -62 GPa for δ TiH_{1.5}(C₁), TiH_{1.75}, and TiH₂ phases, respectively. Such negative values of $(C_{11} - C_{12})/2$ suggest that the δ structures of TiH_{1.5} (C₁), TiH_{1.75}, and TiH₂ should be mechanically unstable at 0 K according to the strain energy theory, and that the $\{110\} < 110 >$ shear would happen spontaneously to induce the $\delta \rightarrow \varepsilon$ transition. It should be noted that after the tetragonal transition, the ε structures (FCT) of TiH_{1.5} (C₁), TiH_{1.75}, and TiH₂ are all mechanically stable. In other words, it is mechanical instability which fundamentally leads to the $\delta \rightarrow \epsilon$ transition of TiH_x phases.

It is of importance to further find out the fundamental mechanism of the $\delta \rightarrow \gamma$ transition in TiH_x. First of all, the present calculation shows that the δ TiH, TiH_{1.25}, and TiH_{1.5} (C_2 and C_3) phases are all mechanically stable with positive values of $(C_{11}-C_{12})/2$, which seem rather dissimilar from the δ TiH_{1.5} (C₁), TiH_{1.75}, and TiH₂ phases with mechanical instability related before. Such a feature of δ structure implies that the $\delta \rightarrow \gamma$ transition in TiH_x phases should not be triggered by mechanical instability. Second, the electronic structures of the δ TiH, TiH_{1.25}, and TiH_{1.5} (C_2 and C_3) phases are also quite different from those of δ TiH_{1.5} (C_1), TiH_{1.75}, and TiH_2. As shown in Fig. 3, the degenerate bands of δ TiH_{1.75} and TiH₂ around Fermi level (\tilde{E}_{f}) bring about the high density of states (DOSs) at $E_{\rm f}$ and Jahn–Teller instability [9,10,12], which consequently induce the $\delta \rightarrow \varepsilon$ transition with degenerate bands split and lower DOSs at $E_{\rm f}$. On the contrary, it could be seen clearly from Fig. 3 that the split of degenerate bands has already happened in the δ structures of TiH(*abgh*), TiH_{1,25}(*abceg*), and TiH_{1,5} (C₃), and that the $\delta \rightarrow \gamma$ transition has much less effect on electronic structure than the $\delta \rightarrow \epsilon$ transition. That is the fundamental reason why the δ TiH, TiH_{1.25}, and TiH_{1.5} (C₂ and C₃) phases are mechanically stable as shown before. Therefore, it can be deduced that both mechanical instability and Jahn–Teller effect in the $\delta \rightarrow \varepsilon$ transition [9,10,12] are not suitable mechanisms for the $\delta \rightarrow \gamma$ transition.

Third, one can observe from Fig. 3 that for each one of TiH (*abgh*), TiH_{1.25}(*abceg*), and TiH_{1.5} (C_3), the electronic band structure

Download English Version:

https://daneshyari.com/en/article/1644811

Download Persian Version:

https://daneshyari.com/article/1644811

Daneshyari.com