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Graphite nanoplatelets (GNPs) were reacted with transition metal (M) carbonyls followed by annealing
and compaction to remove the CO ligands and form bis-hexahapto bonds between the GNP surfaces. The
M-GNP films (M=Cr, W, Mo) were characterized with Raman spectroscopy and conductivity measure-
ments. It was observed that interconnection of the graphitic faces of GNPs by bis-hexahapto metal coordi-
nation resulted in a decrease of electrical conductivity. The complexes offer promise as catalysts and in the
fabrication of new 3-D electronic materials.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Coordination complexes of transition metals with graphitic mate-
rials are of interest from the standpoint of their application as conju-
gated organometallic catalysts [1–3], as electronic and magnetic
materials [4–8], and have been widely studied by theoretical models
[9]. The transition metal chemistry of polycyclic aromatic hydrocar-
bons (PAHs), where the PAHs acted as arene ligands, continues to at-
tract attention in organometallic chemistry [10–12].

Metal–arene oligomeric complexes are generally synthesized by
condensation of metal vapors with neat arene ligands [4], although
solution-phase synthetic methodologies have also been reported
[5,6]. Recently we reported a series of organometallic complexes of
graphene, and single-walled carbon nanotubes (SWNTs), where the
graphene sheet or the SWNT side-wall act as the primary ligand,
using both solution‐phase andmetal atom vapor synthetic techniques
[3,13,14]. In the present manuscript we report the preparation of bulk
graphitic–transition metal complexes by the solution processing of
graphite nanoplatelets (GNPs) [15,16], in the presence of transition
metal (M) carbonyls, where M=Cr, Mo, W.

2. Experimental

2.1. Materials

Natural graphite (NG, average flake size=300 μm) was obtained
from TIMCAL Graphite and Carbon. Dibutyl ether, anhydrous tetrahy-
drofuran (THF), chromium hexacarbonyl, molybdenum hexacarbonyl,
and tungsten hexacarbonyl were obtained from Sigma-Aldrich.

2.2. Preparation of graphite nanoplatelets (GNP)

The GNPs were prepared by acid intercalation (H2SO4/HNO3, 3:1;
15 h, room temperature), followed by thermal shock exfoliation; the
resulting material consists of incompletely exfoliated graphene sheets,
in which there is a broad distribution of particle sizes [15,16]. The exfo-
liated material (1 g) was dispersed in dibutyl ether (400 mL Bu2O) by
shear mixing for 30 min followed by bath sonication for 24 h to obtain
the final GNP suspension (~2.5 mg/mL). UV–vis spectra of the diluted
suspensions were collected in order to confirm the concentration of
the suspension (by reference to the graphitic molar extinction coeffi-
cient, ε550nm=500 L mol−1 cm−1) [17,18].

2.3. Synthesis of metal coordination complexes

In a typical experiment, a mixture of the GNP/Bu2O suspension
(20 mL, 50 mg, 4.17 mmol carbon, 500 equivalents) and tetrahydro-
furan (2 mL THF) was degassed with argon for 1 h and the metal car-
bonyl (0.008 mmol, 1 equivalent) was added [3,14]. The resulting
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mixture was refluxed at 140 °C under argon for 24 h, allowed to cool
to room temperature, and then filtered. Thin films of the M-GNP com-
plexes of pre-determined diameter and thickness were fabricated by
vacuum filtration (Durapore 0.1 μm VVPP membrane filter) of a
known volume of the GNP suspension in dibutylether (GNP/Bu2O).

2.4. Preparation of annealed and compacted M-GNP films

In a typical experiment, the M-GNP films were pressed in a stain-
less steel cell, in which the pole faces of the die were covered with
Teflon films. The cell was connected to a vacuum system, which in-
cluded a liquid nitrogen trap and evacuated to a pressure of
10−4 Torr and a pressure of 500 lb applied to the plunger. The tem-
perature was slowly increased to 100 °C by heating the plates of the
hydraulic press and held at this temperature for 2 h. Then the pres-
sure was increased to 1000 lb and a temperature of 200 °C was ap-
plied to the film for 4 h, after which the apparatus was allowed to
cool to room temperature, the vacuum released and the M-GNP film
(thickness, t~200 μm)was removed from the die for characterization.

2.5. Raman spectroscopy

Raman spectral data were acquired with a Nicolet Almega XR Dis-
persive Raman microscope with a 0.7 μm spot size and 532 nm laser
excitation. The laser power was reduced to 2.5 mW to prevent dam-
age to the sample and the spectra were taken with 10 s acquisition
time.

2.6. Conductivity

The M-GNP film was diced to give a specimen size of ~1 mm
(w)×~2.5 mm (l), the sample contacted with silver paint and the
conductivity measured over the temperature range 90–350 K using
a Keithley 236 4-point Source-Measure Unit in conjunction with a
Keithley 2700 Unit for the temperature measurement.

3. Results and discussion

3.1. Synthesis

In our previous work we reacted Cr(CO)6 and (η6-benzene)Cr(CO)3
with various forms of graphene [exfoliated graphene (XG), epitaxial
graphene (EG), and highly oriented pyrolytic graphite (HOPG)], with

surface functionalization as the primary goal [3]. Thus we prepared
mono-hexahapto (η6-graphene)Cr(CO)3 and (η6-graphene)Cr(η6-ben-
zene) structures from all of the graphene starting materials, but in the
reaction with XG we also observed the formation of bis-hexahapto
(η6-graphene)Cr(η6-graphene).

Scheme 1. Preparation of metal–GNPs complexes: (1) reaction of GNPs surfaces with metal carbonyls, (2) annealing and compaction to cross-link the GNPs.
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Fig. 1. (a) Raman spectrum of annealed and compacted GNP starting material. (b) ID/IG
ratio in the Raman spectra of the samples before and after annealing and compaction;
error bar represents statistics between measurements at different locations.
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