FISEVIER Contents lists available at ScienceDirect # **Materials Letters** journal homepage: www.elsevier.com/locate/matlet # UV Raman spectroscopic study on the surface phase of ZrO₂ modified with Nd₂O₃ Jing Zhang a,*, Song Yan a, Mengqiong Yuan a, Xiang Wang b, Can Li b - ^a School of Chemistry and Materials Science, Liaoning Shihua University, Fushun, Liaoning 113001, China - ^b State Key Laboratory of Catalysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China #### ARTICLE INFO Article history: Received 23 July 2010 Accepted 1 October 2010 Available online 8 October 2010 Keywords: ZrO₂ Surfaces UV Raman spectroscopy XRD Nd₂O₃ Characterization methods #### ABSTRACT The Nd_2O_3 modified ZrO_2 was synthesized using two methods of co-precipitation (Nd- ZrO_2) and wet impregnation (Nd/ ZrO_2). The surface and bulk crystalline phases of Nd_2O_3 modified ZrO_2 were investigated by using UV Raman spectroscopy, visible Raman spectroscopy, and X-ray diffraction (XRD). It is observed that the tetragonal phase in the surface region of Nd- ZrO_2 was not effectively stabilized by Nd_2O_3 , as Nd_2O_3 is mainly present in the bulk of Nd- ZrO_2 . However, in Nd- ZrO_2 it is found that with the impregnation of 0.5 mol% Nd_2O_3 on ZrO_2 , the surface tetragonal phase of Nd/ ZrO_2 can be stabilized even after calcination at 700 °C. The UV Raman results indicate that a disordered structure, or intermediate structure, which is involved in the transition from the tetragonal to the cubic phase, is formed at the surface region of Nd/ ZrO_2 . The formation of the aforementioned intermediate structure inhibits the phase transition from tetragonal to monoclinic in the surface region of Nd/ ZrO_2 . Furthermore, it is observed that the mixed tetragonal and monoclinic phases in the surface region of ZrO_2 which has been impregnated with ZrO_3 and also be stabilized after calcination at ZrO_3 or ZrO_3 at high temperatures. ## 1. Introduction Zirconia (ZrO_2) , which is well known for its excellent thermal, optical, electrical, and mechanical properties, has been widely used in ceramics, solid oxide fuel cells, gas sensors, catalysts and catalyst supports [1,2]. ZrO_2 exhibits three different phases: monoclinic, tetragonal, and cubic [3,4]. The metastable tetragonal phase changes into the monoclinic phase with increasing temperature, and this transformation prevents applications of tetragonal ZrO_2 over a broad temperature range [5]. Many researchers have studied the mechanism of the phase transition of ZrO_2 [4,6] and the method for stabilization of the tetragonal phase, usually by alloying ZrO_2 with some oxides, such as CaO, MgO, and SiO₂ [7–9]. Our previous results [10] indicated that UV Raman spectroscopy is more surface sensitive than visible Raman spectroscopy and X-ray diffraction (XRD) for oxides, such as ZrO₂, which have strong electronic absorptions in the UV region. It was found that the phase transition of ZrO₂ starts in the surface region and then propagates into the bulk. Moreover, it is difficult to stabilize the tetragonal phase in the surface region of ZrO₂ although the tetragonal phase in the bulk of ZrO₂ is effectively stabilized by doping ZrO₂ with yttrium oxide or lanthanum oxide [11]. These findings prompted us to search for methods to stabilize the surface tetragonal phase of ZrO_2 . The surface tetragonal phase can be stabilized if the phase transformation from tetragonal to monoclinic in the surface region of ZrO_2 is inhibited. This may be realized via a reaction between a stabilizer and the ZrO_2 surface. In this study, we prepared neodymium oxide (Nd₂O₃) doped ZrO₂ and Nd₂O₃ loaded ZrO₂ by co-precipitation and wet impregnation methods, respectively. The influence of Nd₂O₃ on the surface and bulk crystalline phase of ZrO₂ was studied by UV Raman spectroscopy, visible Raman spectroscopy, and XRD. Furthermore, we discuss how these results can be used to control the surface phase of ZrO₂. ### 2. Experimental ${\rm Nd_2O_3}$ doped ${\rm ZrO_2}$ (Nd-ZrO₂) was prepared by a co-precipitation method. A solution containing a mixture of zirconium oxychloride, at a fixed concentration of 0.4 mol/L, and variable concentrations of neodymium nitrate was stirred while an ammonia solution was slowly added to until the pH of the solution reached 10. The resulting white precipitate was stirred for 24 h, it was then washed three times with deionized water and subsequently dried at 100 °C for 12 h to obtain amorphous Nd-ZrO₂. To provide a comparison with the Nd-ZrO₂ sample, amorphous ZrO₂ was prepared via the same procedure without an added dopant. Amorphous Nd-ZrO₂ and ZrO₂ were then further calcined in air at 700 °C for 2 h. The ZrO₂ samples with 0.5, 2, and 5 mol% Nd₂O₃ are denoted as 0.5Nd-ZrO₂, 2Nd-ZrO₂, and 5Nd-ZrO₂, respectively. ${ m Nd_2O_3}$ loaded ${ m ZrO_2}$ (Nd/ZrO₂) was prepared by a wet impregnation method [12]. The as-prepared amorphous ${ m ZrO_2}$ was calcined at 400 °C ^{*} Corresponding author. Tel.: +86 413 6863390. E-mail address: jingzhang_dicp@live.cn (J. Zhang). and 500 °C prior to the usage as a support for Nd/ZrO₂ (400 °C) and Nd/ZrO₂ (500 °C), respectively. These Nd/ZrO₂ (400 °C) and Nd/ZrO₂ (500 °C) samples, containing varying amounts of Nd₂O₃ (0.5–5 mol%), were also calcined at 700 °C. The surface crystalline phase of Nd-ZrO₂ and Nd/ZrO₂ was characterized by UV Raman spectroscopy (Jobin-Yvon T64000 with 244 nm excitation line), while visible Raman spectroscopy (Jobin-Yvon U1000 with 532 nm excitation line) and XRD (Rigaku MiniFlex diffractometer, Cu K α) were used to characterize their bulk crystalline phases [10]. #### 3. Results and discussion Fig. 1a shows the UV Raman spectrum of ZrO₂ and Nd-ZrO₂ calcined at 700 °C. We conclude that the surface region of ZrO₂ which has been calcined at 700 °C is in the monoclinic phase because only typical UV Raman bands due to the monoclinic phase (181, 220, 308, 338, 380, 476, and 638 cm⁻¹) [13] are observed. The monoclinic phase is the only crystalline phase observed in the surface region of the 0.5Nd-ZrO₂ and 2Nd-ZrO₂ samples calcined at 700 °C. For 5Nd-ZrO₂ there are low intensity bands due to tetragonal ZrO₂ at 149 and 269 cm⁻¹. These results show that the phase transition in the surface region of ZrO₂ is not effectively retarded after doping Nd₂O₃ into ZrO₂. The bulk region in ZrO_2 samples calcined at 700 °C is dominated by the monoclinic phase with some tetragonal phase (Fig. 1b). For Nd- ZrO_2 calcined at 700 °C, the amount of the tetragonal bulk phase increases with increasing Nd_2O_3 and the tetragonal phase is the main phase in the bulk of $SNd-ZrO_2$. The oxygen vacancies induced by neodymium ions may be responsible for the improvement of the stability of the tetragonal phase [14]. The bulk crystalline phases of $Nd-ZrO_2$ samples were also probed by visible Raman spectroscopy (Fig. 1c), and the result is similar as that of XRD (Fig. 1b). It should be noted that the visible Raman bands of both tetragonal and monoclinic phases decrease in intensity, increase in band width, and some peaks (264, 476, and 635 cm⁻¹) shift to lower energy with increasing amounts of Nd₂O₃. These changes in the Raman bands can be ascribed to structural disorder resulting from the introduction of oxygen vacancies and dopant ions [15]. Keramidas [15] attributed these disordered structures to the breakdown of the wave vector selection rule by translational disorder, through random substitution of anion vacancies and cations. Analysis of transmission electron microscopy (TEM) data indicates that the Nd-ZrO₂ particle size decreases from 90 to 78 nm when the Nd₂O₃ content is increased from 0.5 to 5 mol%. This decrease in particle size can also contribute to the broadening of visible Raman bands observed in Fig. 1c. Though it is not observed in the XRD data, the Raman data, which provides information on the bulk phase(s) of ZrO₂ [10], suggests that some structural disorder forms mainly in the bulk region of Nd-ZrO₂. In other words, Nd₂O₃ may be more enriched in the bulk of the Nd-ZrO₂ sample. As a consequence the Nd³⁺ concentration on the surface of ZrO₂ is far below than that in the bulk region of ZrO₂. This explains why the phase transition in the surface region of ZrO₂ cannot be effectively inhibited by Nd₂O₃. However, the propagation of the monoclinic phase from the surface into the bulk region of ZrO₂ is remarkably slowed by Nd₂O₃. Once the phase transformation starts, the monoclinic phase formed on the surface of ZrO₂ must diffuse into the bulk region of pure ZrO₂ [9]. For Nd-ZrO₂, diffusion of monoclinic ZrO₂ through the bulk Nd₂O₃ doped tetragonal phase may become difficult, inhibiting the phase transition in the bulk of the Nd₂O₃ doped ZrO₂ matrix [16]. We also prepared Nd/ZrO₂ samples by an impregnation method so that Nd³⁺ resided mainly in the surface region of ZrO₂. As revealed by the UV Raman spectrum (Fig. 2a) the surface region of the ZrO₂ (400 °C) support is almost a pure tetragonal phase. It is observed that the surface tetragonal phase of the ZrO₂ (400 °C) support can be effectively stabilized after calcination at 700 °C when impregnated with only 0.5 mol% Nd₂O₃. However, there are differences between the UV Raman spectrum of ZrO₂ (400 °C) and that of Nd/ZrO₂ (400 °C) calcined at 700 °C. For 2Nd/ZrO₂ (400 °C), the bands due to the tetragonal phase become wider and the band at 269 cm⁻¹ shifts to 261 cm⁻¹. Meanwhile, a broad band is observed at 697 cm⁻¹. The appearance of a band at 697 cm⁻¹ is attributed to structural disorder [15] or the presence of a cubic phase [17] on the surface of Nd/ZrO₂ (400 °C). It is possible that the changes observed in the UV Raman spectra of Nd/ZrO₂ (400 °C) are associated with the disordered structure or with the transition structure from the tetragonal to the cubic phase which is formed in the surface region of Nd/ZrO₂ (400 °C). These results suggest that the Nd³⁺ ions might be enriched in the surface region of tetragonal ZrO₂, and thus prevent the monoclinic phase from forming in the surface region of tetragonal ZrO₂ [11]. Based on XRD data (Fig. 2b) and visible Raman spectra (not shown), it is clear that the bulk phase of Nd/ZrO₂ (400 °C), calcined at 700 °C, maintains the tetragonal phase of the ZrO₂ (400 °C) support. No structural distortion induced by Nd₂O₃ is observed in Nd/ZrO₂ (400 °C) by either XRD or visible Raman spectroscopy. Fig. 1. UV Raman spectra (a), XRD patterns (b), and visible Raman spectra (c) of ZrO₂ and Nd-ZrO₂ calcined at 700 °C. # Download English Version: # https://daneshyari.com/en/article/1647817 Download Persian Version: https://daneshyari.com/article/1647817 <u>Daneshyari.com</u>