





#### materials letters

Materials Letters 61 (2007) 4216-4221

www.elsevier.com/locate/matlet

# The preparation and properties of biodegradable polyesteramide composites reinforced with nano-CaCO<sub>3</sub> and nano-SiO<sub>2</sub>

Xiaobo Liu a,b,\*, Yaobang Zou c, Guoping Cao a,b, Daowen Luo a,b

Received 15 November 2005; accepted 19 January 2007 Available online 26 January 2007

#### Abstract

Composites were fabricated utilizing melt mixing aliphatic polyesteramide (PEA) with ordinary CaCO<sub>3</sub>, nano-CaCO<sub>3</sub>, and nano-SiO<sub>2</sub>. The effect of filler on the matrix was studied by mechanical properties and hydrolysis rate measuring. The ordinary filler as well as the nano-filler had a negative effect on the stability of the polymer melt, and an improved mechanical property was obtained around a critical concentration of the filler where a percolation phenomenon appeared. When the composites underwent hydrolysis, the inert filler played a role as a mechanical obstacle in the matrix and retarded the hydrolysis; on the other hand, the interfacial area between the filler particle and the matrix resin increased with the filler, which would accelerate the hydrolysis. As a result of these two inverse effects, a minimum and a maximum value appeared in the plot of the degradation rate-filler content graph. For the ordinary filler filled polymer, the filler retarded the hydrolysis; in great contrast, the hydrolysis rate of nano-composites showed a maximum value around the critical concentration of the filler, and was much higher than the neat resin.

© 2007 Elsevier B.V. All rights reserved.

Keywords: Polyesteramide; Nano-composites; Preparation; Properties; Degradation

#### 1. Introduction

Polymer nano-composites have received considerable attention since the discovery that polymer properties may be greatly improved by the presence of nano-sized particles. Some good news comes from the invention of nano-composites, which have much improved modulus [1–4], strength [1–4], thermal resistance [1–4], permeability [1–3,5,6], flammability resistance [3,4,7,8] and some of them even have improved biodegradability [9,10]. The mechanism behind the reinforcement of nano-composites is a physical cross-linking, which

E-mail addresses: Liuxb.cioc@163.com, liuxb@uestc.edu.cn (X. Liu).

provides them with much high modulus as well as impact strength. In contrast, the conventional mineral-filler cannot provide the composite with high strength, high modulus and at

Table 1
Temperature (°C) at which certain weight loss of PEA and its composite occurs

| Substance                         | $T_{\rm start}^{a}$ | $T_5^{\ b}$ | $T_{10}^{b}$ | $T_{15}^{\ \ b}$ | $T_{30}^{b}$ | $T_{50}^{\ \ b}$ | $T_{ m onset}^{\ \ c}$ |
|-----------------------------------|---------------------|-------------|--------------|------------------|--------------|------------------|------------------------|
| PEA d                             | 270                 | 350         | 373          | 385              | 407          | 442              | 372                    |
| CC 40% e                          | 254                 | 337         | 357          | 371              | 403          | 482              | 353                    |
| NCC 16% e                         | 257                 | 309         | 325          | 336              | 387          | 427              | 323                    |
| SiO <sub>2</sub> 2% <sup>e</sup>  | 254                 | 342         | 363          | 374              | 397          | 422              | 366                    |
| SiO <sub>2</sub> 12% <sup>e</sup> | 272                 | 344         | 365          | 377              | 399          | 425              | 366                    |

<sup>&</sup>lt;sup>a</sup> Start of weight loss.

a Department of Applied Chemistry, School of Microelectronic and Solid Electronic, University of Electronic Science and Technology of China, Chengdu 610054, China

b The Research Institute of Special Functional Polymers, State Key Laboratory of Electronic Thin Films and Integrated Devices,
University of Electronic Science and Technology of China, Chengdu 610054, China

<sup>c</sup> Sichuan Pushi Plastics and Rubber Co. Ltd, Yibin 644000, China

<sup>\*</sup> Corresponding author. Department of Applied Chemistry, School of Microelectronic and Solid Electronic, University of Electronic Science and Technology of China, Chengdu 610054, China. Tel./fax: +86 28 83206614.

<sup>&</sup>lt;sup>b</sup> Temperature where the weight loss is 5, 10, 15% and so on.

<sup>&</sup>lt;sup>c</sup> Start of weight loss according to the TGA curves.

<sup>&</sup>lt;sup>d</sup> PEA with antioxidant but no fillers.

 $<sup>^{\</sup>rm c}$  PEA composites with 40% CC (400 mesh), 16% NCC, 2% and 12%  ${\rm SiO_2},$  respectively.

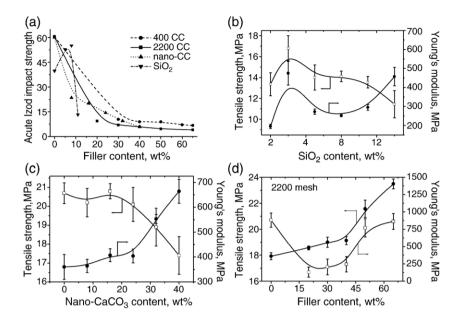



Fig. 1. Mechanical properties of filled PEA. (a) Acute notched Izod impact strength. Tensile and Young's modulus of PEA filled with SiO<sub>2</sub> (b), NCC (c) and 2200 mesh CC (d).

the same time with high impact strength. Their size of 1-50 nm is similar to the typical size of chain length; the nano-filler plays a role of a trapped entanglement [11], a kind of physical crosslinking. For the polymers having a glass transition temperature  $(T_{\rm g})$  lower than the room temperature  $(T_{\rm r})$ , the reinforcement of the nano-filler on the matrix is extraordinarily good [12]. This is real good news for the biodegradable polymers which have a  $T_{\rm g}$  lower than  $T_{\rm r}$ . However, till now, there are limited papers related to the biodegradable polymer based nano-composites [9,10,13,14].

Among all of the properties of the composite, the first one, which is paid much attention, is how the nano-filler affects the biodegradability of the matrix. But the information about this question was full of contradictions. Lee et al. reported that clay

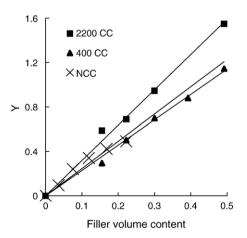



Fig. 2. Turcsanyi model for different sizes of CC (CC) filled PEA composites.  $\blacksquare$ : 2200 mesh CC,  $y=2.6768\Phi$ ,  $R^2=0.942$ ;  $\blacktriangle$ : 400 mesh CC,  $y=2.2801\Phi$ ,  $R^2=0.9949$ ;  $\times$ : NCC *X*-axis:  $y=2.4575\Phi$ ,  $R^2=0.9543$ ). *X*-axis: volume content  $\Phi$  of filler. *Y*-axis:  $\text{Ln}(\sigma_c/\sigma_m)-\text{Ln}((1-\Phi)/(1+2.318\Phi))$ .

had a retarded effect on the biodegradability of clay/aliphatic polyester [15]. S.Sinha Ray et al. reported the accelerated effect of montmorillonite on the biodegradability of PLA [9,10,16,17]. Fukuda et al. [18] reported the hydrolysis of the PLLA composite films containing CaCO<sub>3</sub> (CC) with the size of 90–200 nm in the presence of proteinase K, and the results revealed that the enzymatic hydrolysis rates of the PLLA composite films containing 5 and 10 wt.% of the CC particles were much higher than that of the pure PLLA film. Additional amounts of CC particles exceeding 10 wt.% led to a drop in the enzymatic hydrolysis rate. We here tried to explain why the confusing data was obtained.

Aliphatic polyesteramides, which are biodegradable and have good processing and end-use properties, are interesting materials for environmental and biomedical applications [19–21]. Till now, the polyesteramide nano-composites based montmorillonites were reported by M.K. Rook et al. [22]. In this paper, we adopted the melt mixing technique to prepare nano-composites. We here report two kinds of nano-filler SiO<sub>2</sub> and nano-CaCO<sub>3</sub> (NCC) on the properties of a filled biodegradable aliphatic polyesteramide (PEA) by the melt mixing technique utilizing the twin-screw extruder.

#### 2. Experimental

#### 2.1. Materials

PEA with the density of 1.16 g/cm<sup>3</sup> was synthesized in our laboratory. The SiO<sub>2</sub> from Wacker-Chemie GmbH (Hydrophilic Wacker HDK® T40, with the density of 2.20 g/cm<sup>3</sup>, BET surface area of 360–440 m<sup>2</sup>/g), was treated with a silicon coupling agent 3-(trimethoxy-sily)propylmethacrylate KH-570. The nano-CaCO<sub>3</sub> (NCC, with the size of 100–120 nm) was a gift from Dongfang Insulting Co. Ltd, China. 400 mesh

### Download English Version:

## https://daneshyari.com/en/article/1651954

Download Persian Version:

https://daneshyari.com/article/1651954

<u>Daneshyari.com</u>