

Available online at www.sciencedirect.com

materials letters

Materials Letters 61 (2007) 2939 - 2942

www.elsevier.com/locate/matlet

Effect of Sb⁵⁺ substitution on the dielectric properties of Ag(Nb_{0.8}Ta_{0.2})O₃ ceramics

XiuYing Guo ^a, Mi Xiao ^{b,*}, XiaWan Wu ^b, ZhiSheng Zhang ^b

^a School of Electronics Information and Communications Engineering, Tianjin key laboratory of film electronic and communication device,
Tianjin University of Technology, Tianjin 300191, People's Republic of China
^b School of Electric Information Engineering, Tianjin University, Tianjin 300072, People's Republic of China

Received 16 July 2006; accepted 13 October 2006 Available online 3 November 2006

Abstract

Sb₂O₅ were selected to substitute (Nb_{0.8}Ta_{0.2})₂O₅ and the effects of substitution on the dielectric properties of Ag(Nb_{0.8}Ta_{0.2})O₃ ceramics were studied. The dielectric properties of Ag(Nb_{0.8}Ta_{0.2})_{1-x}Sb_xO₃ ceramics were found to be improved by the substitution of Sb for Nb/Ta. The ε value of Ag(Nb_{0.8}Ta_{0.2})_{1-x}Sb_xO₃ ceramics sintered at 1060 °C increased from 430 to 825 with x increasing from 0 to 0.08, the tan δ value decreased sharply from 0.0085 to 0.0023 (at 1 MHz) with x increasing from 0 to 0.04, and then kept to a lower tan δ value \sim 0.0024 with x to 0.08. The TCC values decreased from +1450 ppm/°C for x=0 to -38.5 ppm/°C for x=0.08. The Ag(Nb_{0.8}Ta_{0.2})_{1-x}Sb_xO₃ ceramics with x=0.08 sintered at 1050 °C exhibited the optimum dielectric properties of ε \sim 854, tan δ \sim 0.0024 (1 MHz), and TCC \sim 36.86 ppm/°C.

Keywords: Ag(Nb_{0.8}Ta_{0.2})O₃; Ceramics; Dielectric properties

1. Introduction

New materials for microwave dielectric resonators should have a high dielectric permittivity ε , a high quality factor Q and a temperature coefficient of the resonant frequency τ_f close to zero [1,2]. Comprehensive study on the dielectric properties of microwave, submillimeter to infrared spectroscopy [3] has proved that silver niobate—tantalate solid solutions $AgNb_{1-x}Ta_xO_3$ (ANT) are potentially good microwave materials. In these materials, there is a negligible dielectric dispersion for a very broad frequency range from 1 kHz up to approximately 100 GHz [4–6]. The test performed in 1 GHz region indicated a permittivity of 430, a temperature coefficient of permittivity <50 ppm/°C and a Q value of 700 for the $AgNb_{0.65}Ta_{0.35}O_3$ – $AgNb_{0.35}Ta_{0.65}O_3$ composite [7].

Partial replacements of Ag by K, Na and Li [8–10] in A site of AgNbO₃ were reported. However, only the Ta was used to substitute for Nb in B site of AgNbO₃ to modify the dielectric properties of AgNbO₃ ceramics [4,7,11]. For the similar radius of Sb⁵⁺($r_{\rm Sb}^{5+}$ =0.062 nm) to that of Nb⁵⁺ ($r_{\rm Nb}^{5+}$ =0.069 nm) and

 $Ta^{5+}(r_{Ta}^{5+}=0.068 \text{ nm})$, the replacement of Nb ions by Sb ions in $(Bi_{1.8}Zn_{0.2})(Zn_{0.6}Nb_{1.4-x}Sb_x)O_7$ [12], $Bi(Nb,Sb)O_4$ [13] and $(Mg_{4-x}M_x)(Nb_{2-y}Sb_y)O_9(M=Zn \text{ and Ni})$ [14] system have been

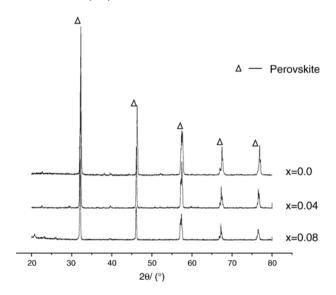


Fig. 1. XRD patterns of Ag(Nb_{0.8}Ta_{0.2})_{1-x}Sb_xO₃ (x=0, 0.04, 0.08) ceramics.

^{*} Corresponding author. Tel.: +86 22 2740 2838; fax: +86 22 2740 1233. *E-mail address:* guo_xy@tom.com (X. Guo).

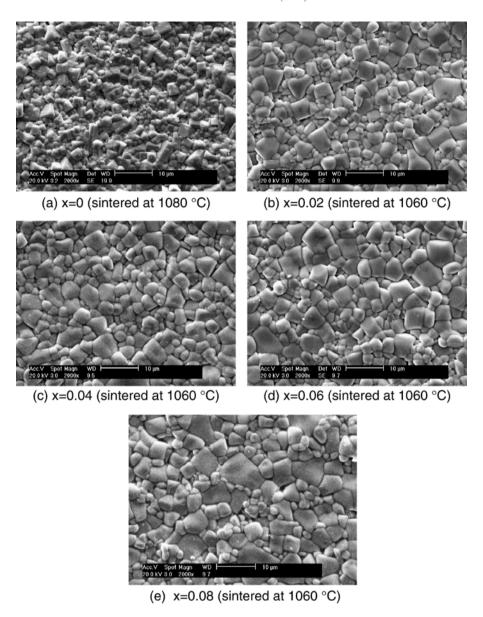


Fig. 2. SEM micrographs of $Ag(Nb_{0.8}Ta_{0.2})_{1-x}Sb_xO_3$ ceramics. (a) x=0 (sintered at 1080 °C). (b) x=0.02 (sintered at 1060 °C). (c) x=0.04 (sintered at 1060 °C). (d) x=0.06 (sintered at 1060 °C). (e) x=0.08 (sintered at 1060 °C).

investigated. We suggest that the substitution of Nb⁵⁺/Ta⁵⁺ by Sb⁵⁺ in perovskite $AgNb_{1-x}Ta_xO_3$ might cause a slight modification of crystal structure, resulting in a change on dielectric properties. In our previous works, we have systemically researched the influences of doping, sintering atmosphere and process of preparation on $Ag(Nb_{0.8}Ta_{0.2})O_3$ ceramics [15–17]. So, here, $Ag(Nb_{0.8}Ta_{0.2})O_3$ ceramics was used as the host material and Sb_2O_5 was selected to substitute for $(Nb_{0.8}Ta_{0.2})_2O_5$. The aim of this work is to obtain perovskite $Ag(Nb_{0.8}Ta_{0.2})_{1-x}$ Sb_xO_3 ceramics of low loss and with near zero temperature coefficients.

2. Experimental

A traditional solid-state reaction method was applied to prepare $Ag(Nb_{0.8}Ta_{0.2})_{1-x}Sb_xO_3$ (x=0, 0.02, 0.04, 0.06, 0.08) solid solutions using reagent-grade Nb_2O_5 , Ta_2O_5 , Ag_2O and Sb_2O_5 .

First, Nb_2O_5 and Ta_2O_5 powders were mixed on the basis of the stoichiometric composition ($Nb_{0.8}Ta_{0.2}$) $_2O_5$ and calcined at 1200 °C for 10 h, after which Ag_2O and Sb_2O_5 were added in the appropriate molar ratio. And the mixture was milled for 4 h in distilled water, then dried and fired at 950 °C for 10 h to form the ANT's precursors. The prereacted powders were then milled again for 4 h and dried. Then, 6 wt.% organic binder was added to the dried powders, and samples were pressed into disks of 10 mm in diameter and 1 mm in thickness under a pressure of 10 MPa. The disks were sintered at 1000 °C–1100 °C in air for 2 h.

The crystal phases of samples were examined with an X-ray diffractometer (Model 2038X, Rigaku Co.) with Cu *K*a radiation. The microstructure investigations were conducted via Scanning Electron Microscopy (SEM, Model Hitachi X-650).

The dielectric properties were measured at 1 MHz. The loss tangent and capacitance of the samples were measured by HP4278A RLC and the temperature coefficient of capacitance

Download English Version:

https://daneshyari.com/en/article/1652409

Download Persian Version:

https://daneshyari.com/article/1652409

<u>Daneshyari.com</u>